
Course notes on

Optimization for Machine Learning

Gabriel Peyré
CNRS & DMA

École Normale Supérieure
gabriel.peyre@ens.fr

https://mathematical-tours.github.io

www.numerical-tours.com

March 24, 2020

Abstract

This document presents first order optimization methods and their applications to machine learning.
This is not a course on machine learning (in particular it does not cover modeling and statistical consid-
erations) and it is focussed on the use and analysis of cheap methods that can scale to large datasets and
models with lots of parameters. These methods are variations around the notion of “gradient descent”,
so that the computation of gradients plays a major role. This course covers basic theoretical properties
of optimization problems (in particular convex analysis and first order differential calculus), the gradient
descent method, the stochastic gradient method, automatic differentiation, shallow and deep networks.

Contents

1 Motivation in Machine Learning 2
1.1 Unconstraint optimization . 2
1.2 Regression . 3
1.3 Classification . 3

2 Basics of Convex Analysis 3
2.1 Existence of Solutions . 3
2.2 Convexity . 4
2.3 Convex Sets . 5

3 Derivative and gradient 5
3.1 Gradient . 5
3.2 First Order Conditions . 6
3.3 Least Squares . 7
3.4 Link with PCA . 8
3.5 Classification . 9
3.6 Chain Rule . 9

4 Gradient Descent Algorithm 10
4.1 Steepest Descent Direction . 10
4.2 Gradient Descent . 11

1

gabriel.peyre@ens.fr
https://mathematical-tours.github.io
www.numerical-tours.com

5 Convergence Analysis 12
5.1 Quadratic Case . 12
5.2 General Case . 15

6 Regularization 18
6.1 Penalized Least Squares . 18
6.2 Ridge Regression . 19
6.3 Lasso . 19
6.4 Iterative Soft Thresholding . 21

7 Stochastic Optimization 21
7.1 Minimizing Sums and Expectation . 22
7.2 Batch Gradient Descent (BGD) . 22
7.3 Stochastic Gradient Descent (SGD) . 23
7.4 Stochastic Gradient Descent with Averaging (SGA) . 25
7.5 Stochastic Averaged Gradient Descent (SAG) . 26

8 Multi-Layers Perceptron 26
8.1 MLP and its derivative . 26
8.2 MLP and Gradient Computation . 27
8.3 Universality . 28

9 Automatic Differentiation 30
9.1 Computational Graphs . 31
9.2 Forward Mode of Automatic Differentiation . 31
9.3 Reverse Mode of Automatic Differentiation . 33
9.4 Feed-forward Architectures . 34
9.5 Multilayer Perceptron . 35

1 Motivation in Machine Learning

1.1 Unconstraint optimization

In most part of this Chapter, we consider unconstrained convex optimization problems of the form

inf
x∈Rp

f(x), (1)

and try to devise “cheap” algorithms with a low computational cost per iteration to approximate a minimizer
when it exists. The class of algorithms considered are first order, i.e. they make use of gradient information.
In the following, we denote

argmin
x

f(x)
def.
= {x ∈ Rp ; f(x) = inf f} ,

to indicate the set of points (it is not necessarily a singleton since the minimizer might be non-unique) that
achieve the minimum of the function f . One might have argmin f = ∅ (this situation is discussed below),
but in case a minimizer exists, we denote the optimization problem as

min
x∈Rp

f(x). (2)

In typical learning scenario, f(x) is the empirical risk for regression or classification, and p is the number
of parameter. For instance, in the simplest case of linear models, we denote (ai, yi)

n
i=1 where ai ∈ Rp are

the features. In the following, we denote A ∈ Rn×p the matrix whose rows are the ai.

2

Figure 1: Left: linear regression, middle: linear classifier, right: loss function for classification.

Figure 2: Left: non-existence of minimizer, middle: multiple minimizers, right: uniqueness.

1.2 Regression

For regression, yi ∈ R, in which case

f(x) =
1

2

n∑
i=1

(yi − 〈x, ai〉)2 =
1

2
||Ax− y||2, (3)

is the least square quadratic risk function (see Fig. 1). Here 〈u, v〉 =
∑p
i=1 uivi is the canonical inner product

in Rp and || · ||2 = 〈·, ·〉.

1.3 Classification

For classification, yi ∈ {−1, 1}, in which case

f(x) =

n∑
i=1

`(−yi〈x, ai〉) = L(−diag(y)Ax) (4)

where ` is a smooth approximation of the 0-1 loss 1R+ . For instance `(u) = log(1 + exp(u)), and diag(y) ∈
Rn×n is the diagonal matrix with yi along the diagonal (see Fig. 1, right). Here the separable loss function
L = Rn → R is, for z ∈ Rn, L(z) =

∑
i `(zi).

2 Basics of Convex Analysis

2.1 Existence of Solutions

In general, there might be no solution to the optimization (1). This is of course the case if f is unbounded
by bellow, for instance f(x) = −x2 in which case the value of the minimum is −∞. But this might also
happen if f does not grow at infinity, for instance f(x) = e−x, for which min f = 0 but there is no minimizer.

In order to show existence of a minimizer, and that the set of minimizer is bounded (otherwise one can
have problems with optimization algorithm that could escape to infinity), one needs to show that one can
replace the whole space Rp by a compact sub-set Ω ⊂ Rp (i.e. Ω is bounded and close) and that f is
continuous on Ω (one can replace this by a weaker condition, that f is lower-semi-continuous, but we ignore
this here). A way to show that one can consider only a bounded set is to show that f(x) → +∞ when

3

Figure 3: Coercivity condition for least squares.

Figure 4: Convex vs. non-convex functions ; Strictly convex vs. non strictly convex functions.

x → +∞. Such a function is called coercive. In this case, one can choose any x0 ∈ Rp and consider its
associated lower-level set

Ω = {x ∈ Rp ; f(x) 6 f(x0)}

which is bounded because of coercivity, and closed because f is continuous. One can actually show that for
convex function, having a bounded set of minimizer is equivalent to the function being coercive (this is not
the case for non-convex function, for instance f(x) = min(1, x2) has a single minimum but is not coercive).

Example 1 (Least squares). For instance, for the quadratic loss function f(x) = 1
2 ||Ax−y||

2, coercivity holds
if and only if ker(A) = {0} (this corresponds to the overdetermined setting). Indeed, if ker(A) 6= {0} if x?

is a solution, then x? + u is also solution for any u ∈ ker(A), so that the set of minimizer is unbounded. On
contrary, if ker(A) = {0}, we will show later that the set of minimizer is unique, see Fig. 3. If ` is strictly
convex, the same conclusion holds in the case of classification.

2.2 Convexity

Convex functions define the main class of functions which are somehow “simple” to optimize, in the sense
that all minimizers are global minimizers, and that there are often efficient methods to find these minimizers
(at least for smooth convex functions). A convex function is such that for any pair of point (x, y) ∈ (Rp)2,

∀ t ∈ [0, 1], f((1− t)x+ ty) 6 (1− t)f(x) + tf(y) (5)

which means that the function is bellow its secant (and actually also above its tangent when this is well
defined), see Fig. 4. If x? is a local minimizer of a convex f , then x? is a global minimizer, i.e. x? ∈ argmin f .

Convex function are very convenient because they are stable under lots of transformation. In particular,
if f , g are convex and a, b are positive, af + bg is convex (the set of convex function is itself an infinite
dimensional convex cone!) and so is max(f, g). If g : Rq → R is convex and B ∈ Rq×p, b ∈ Rq then
f(x) = g(Bx + b) is convex. This shows immediately that the square loss appearing in (3) is convex, since
|| · ||2/2 is convex (as a sum of squares). Also, similarly, if ` and hence L is convex, then the classification
loss function (4) is itself convex.

4

Figure 5: Comparison of convex functions f : Rp → R (for p = 1) and convex sets C ⊂ Rp (for p = 2).

Strict convexity. When f is convex, one can strengthen the condition (5) and impose that the inequality
is strict for t ∈]0, 1[(see Fig. 4, right), i.e.

∀ t ∈]0, 1[, f((1− t)x+ ty) < (1− t)f(x) + tf(y). (6)

In this case, if a minimum x? exists, then it is unique. Indeed, if x?1 6= x?2 were two different minimizer, one

would have by strict convexity f(
x?
1+x?

2

2) < f(x?1) which is impossible.

Example 2 (Least squares). For the quadratic loss function f(x) = 1
2 ||Ax− y||

2, strict convexity is equivalent
to ker(A) = {0}. Indeed, we see later that its second derivative is ∂2f(x) = A>A and that strict convexity
is implied by the eigenvalues of A>A being strictly positive. The eigenvalues of A>A being positive, it is
equivalent to ker(A>A) = {0} (no vanishing eigenvalue), and A>Az = 0 implies 〈A>Az, z〉 = ||Az||2 = 0 i.e.
z ∈ ker(A).

2.3 Convex Sets

A set Ω ⊂ Rp is said to be convex if for any (x, y) ∈ Ω2, (1 − t)x + ty ∈ Ω for t ∈ [0, 1]. The
connexion between convex function and convex sets is that a function f is convex if and only if its epigraph

epi(f)
def.
=
{

(x, t) ∈ Rp+1 ; t > f(x)
}

is a convex set.

Remark 1 (Convexity of the set of minimizers). In general, minimizers x? might be non-unique, as shown on
Figure 3. When f is convex, the set argmin(f) of minimizers is itself a convex set. Indeed, if x?1 and x?2 are
minimizers, so that in particular f(x?1) = f(x?2) = min(f), then f((1− t)x?1 + tx?2) 6 (1− t)f(x?1) + tf(x?2) =
f(x?1) = min(f), so that (1− t)x?1 + tx?2 is itself a minimizer. Figure 5 shows convex and non-convex sets.

3 Derivative and gradient

3.1 Gradient

If f is differentiable along each axis, we denote

∇f(x)
def.
=

(
∂f(x)

∂x1
, . . . ,

∂f(x)

∂xp

)>
∈ Rp

the gradient vector, so that ∇f : Rp → Rp is a vector field. Here the partial
derivative (when they exits) are defined as

∂f(x)

∂xk

def.
= lim

η→0

f(x+ ηδk)− f(x)

η

5

where δk = (0, . . . , 0, 1, 0, . . . , 0)> ∈ Rp is the kth canonical basis vector.
Beware that ∇f(x) can exist without f being differentiable. Differentiability of f at each reads

f(x+ ε) = f(x) + 〈ε, ∇f(x)〉+ o(||ε||). (7)

Here R(ε) = o(||ε||) denotes a quantity which decays faster than ε toward 0, i.e. R(ε)
||ε|| → 0 as ε→ 0. Existence

of partial derivative corresponds to f being differentiable along the axes, while differentiability should hold
for any converging sequence of ε→ 0 (i.e. not along along a fixed direction).

Also, ∇f(x) is the only vector such that the relation (7). This means that a possible strategy to both
prove that f is differentiable and to obtain a formula for ∇f(x) is to show a relation of the form

f(x+ ε) = f(x) + 〈ε, g〉+ o(||ε||),

in which case one necessarily has ∇f(x) = g.
The following proposition shows that convexity is equivalent to the graph of the function being above its

tangents.

Proposition 1. If f is differentiable, then

f convex ⇔ ∀(x, x′), f(x) > f(x′) + 〈∇f(x′), x− x′〉.

Proof. One can write the convexity condition as

f((1− t)x+ tx′) 6 (1− t)f(x) + tf(x′) =⇒ f(x+ t(x′ − x))− f(x)

t
6 f(x′)− f(x)

hence, taking the limit t→ 0 one obtains

〈∇f(x), x′ − x〉 6 f(x′)− f(x).

For the other implication, we apply the right condition replacing (x, x′) by (x, xt
def.
= (1 − t)x + tx′) and

(x′, (1− t)x+ tx′)

f(x) > f(xt) + 〈∇f(xt), x− xt〉 = f(xt)− t〈∇f(xt), x− x′〉
f(x′) > f(xt) + 〈∇f(xt), x

′ − xt〉 = f(xt) + (1− t)〈∇f(xt), x− x′〉,

multiplying these inequality by respectively 1− t and t, and summing them, gives

(1− t)f(x) + tf(x′) > f(xt).

3.2 First Order Conditions

The main theoretical interest (we will see later that it also have algorithmic interest) of the gradient
vector is that it is a necessarily condition for optimality, as stated bellow.

Proposition 2. If x? is a local minimum of the function f (i.e. that f(x?) 6 f(x) for all x in some ball
around x?) then

∇f(x?) = 0.

Proof. One has for ε small enough and u fixed

f(x?) 6 f(x? + εu) = f(x?) + ε〈∇f(x?), u〉+ o(ε) =⇒ 〈∇f(x?), u〉 > o(1) =⇒ 〈∇f(x?), u〉 > 0.

So applying this for u and −u in the previous equation shows that 〈∇f(x?), u〉 = 0 for all u, and hence
∇f(x?) = 0.

6

Figure 6: Function with local maxima/minima (left), saddle point (middle) and global minimum (right).

Note that the converse is not true in general, since one might have ∇f(x) = 0 but x is not a local
mininimum. For instance x = 0 for f(x) = −x2 (here x is a maximizer) or f(x) = x3 (here x is neither a
maximizer or a minimizer, it is a saddle point), see Fig. 6. Note however that in practice, if ∇f(x?) = 0 but
x is not a local minimum, then x? tends to be an unstable equilibrium. Thus most often a gradient-based
algorithm will converge to points with ∇f(x?) = 0 that are local minimizers. The following proposition
shows that a much strong result holds if f is convex.

Proposition 3. If f is convex and x? a local minimum, then x? is also a global minimum. If f is differen-
tiable and convex,

x? ∈ argmin
x

f(x) ⇐⇒ ∇f(x?) = 0.

Proof. For any x, there exist 0 < t < 1 small enough such that tx+ (1− t)x? is close enough to x?, and so
since it is a local minimizer

f(x?) 6 f(tx+ (1− t)x?) 6 tf(x) + (1− t)f(x?) =⇒ f(x?) 6 f(x)

and thus x? is a global minimum.
For the second part, we already saw in (2) the ⇐ part. We assume that ∇f(x?) = 0. Since the graph of

x is above its tangent by convexity (as stated in Proposition 1),

f(x) > f(x?) + 〈∇f(x?), x− x?〉 = f(x?).

Thus in this case, optimizing a function is the same a solving an equation ∇f(x) = 0 (actually p
equations in p unknown). In most case it is impossible to solve this equation, but it often provides interesting
information about solutions x?.

3.3 Least Squares

The most important gradient formula is the one of the square loss (3), which can be obtained by expanding
the norm

f(x+ ε) =
1

2
||Ax− y +Aε||2 =

1

2
||Ax− y||+ 〈Ax− y, Aε〉+

1

2
||Aε||2

= f(x) + 〈ε, A>(Ax− y)〉+ o(||ε||).

Here, we have used the fact that ||Aε||2 = o(||ε||) and use the transpose matrix A>. This matrix is obtained
by exchanging the rows and the columns, i.e. A> = (Aj,i)

j=1,...,p
i=1,...,n, but the way it should be remember and

used is that it obeys the following swapping rule of the inner product,

∀ (u, v) ∈ Rp × Rn, 〈Au, v〉Rn = 〈u, A>v〉Rp .

7

Computing gradient for function involving linear operator will necessarily requires such a transposition step.
This computation shows that

∇f(x) = A>(Ax− y). (8)

This implies that solutions x? minimizing f(x) satisfies the linear system (A>A)x? = A>y. If A?A ∈ Rp×p
is invertible, then f has a single minimizer, namely

x? = (A>A)−1A>y. (9)

This shows that in this case, x? depends linearly on the data y, and the corresponding linear operator
(A>A)−1A? is often called the Moore-Penrose pseudo-inverse of A (which is not invertible in general, since
typically p 6= n). The condition that A>A is invertible is equivalent to ker(A) = {0}, since

A>Ax = 0 =⇒ ||Ax||2 = 〈A>Ax, x〉 = 0 =⇒ Ax = 0.

In particular, if n < p (under-determined regime, there is too much parameter or too few data) this can
never holds. If n > p and the features xi are “random” then ker(A) = {0} with probability one. In this
overdetermined situation n > p, ker(A) = {0} only holds if the features {ai}ni=1 spans a linear space Im(A>)
of dimension strictly smaller than the ambient dimension p.

3.4 Link with PCA

Let us assume the (ai)
n
i=1 are centered, i.e.

∑
i ai = 0. If this is not the case, one needs to replace

ai by ai − m where m
def.
= 1

n

∑n
i=1 ai ∈ Rp is the empirical mean. In this case, C

n = A>A/n ∈ Rp×p is
the empirical covariance of the point cloud (ai)i, it encodes the covariances between the coordinates of the
points. Denoting ai = (ai,1, . . . , ai,p)

> ∈ Rp (so that A = (ai,j)i,j) the coordinates, one has

∀ (k, `) ∈ {1, . . . , p}2, Ck,`
n

=
1

n

n∑
i=1

ai,kai,`.

In particular, Ck,k/n is the variance along the axis k. More generally, for any unit vector u ∈ Rp, 〈Cu, u〉/n >
0 is the variance along the axis u.

For instance, in dimension p = 2,

C

n
=

1

n

(∑n
i=1 a

2
i,1

∑n
i=1 ai,1ai,2∑n

i=1 ai,1ai,2
∑n
i=1 a

2
i,2

)
.

Since C is a symmetric, it diagonalizes in an ortho-basis U = (u1, . . . , up) ∈ Rp×p. Here, the vectors
uk ∈ Rp are stored in the columns of the matrix U . The diagonalization means that there exist scalars (the
eigenvalues) (λ1, . . . , λp) so that (1

nC)uk = λkuk. Since the matrix is orthogononal, UU> = U>U = Idp, and
equivalently U−1 = U>. The diagonalization property can be conveniently written as 1

nC = U diag(λk)U>.
One can thus re-write the covariance quadratic form in the basis U as being a separable sum of p squares

1

n
〈Cx, x〉 = 〈U diag(λk)U>x, x〉 = 〈diag(λk)(U>x), (U>x)〉 =

p∑
k=1

λk〈x, uk〉2. (10)

Here (U>x)k = 〈x, uk〉 is the coordinate k of x in the basis U . Since 〈Cx, x〉 = ||Ax||2, this shows that all
the eigenvalues λk > 0 are positive.

If one assumes that the eigenvalues are ordered λ1 > λ2 > . . . > λp, then projecting the points ai on the
first m eigenvectors can be shown to be in some sense the best linear dimensionality reduction possible (see
next paragraph), and it is called Principal Component Analysis (PCA). It is useful to perform compression
or dimensionality reduction, but in practice, it is mostly used for data visualization in 2-D (m = 2) and 3-D
(m = 3).

8

Figure 7: Left: point clouds (ai)i with associated PCA directions, right: quadratic part of f(x).

The matrix C/n encodes the covariance, so one can approximate the point cloud by an ellipsoid whose
main axes are the (uk)k and the width along each axis is ∝

√
λk (the standard deviations). If the data

are approximately drawn from a Gaussian distribution, whose density is proportional to exp(−1
2 〈C

−1a, a〉),
then the fit is good. This should be contrasted with the shape of quadratic part 1

2 〈Cx, x〉 of f(x), since the

ellipsoid
{
x ; 1

n 〈Cx, x〉 6 1
}

has the same main axes, but the widths are the inverse 1/
√
λk. Figure 7 shows

this in dimension p = 2.

3.5 Classification

We can do a similar computation for the gradient of the classification loss (4). Assuming that L is
differentiable, and using the Taylor expansion (7) at point −diag(y)Ax, one has

f(x+ ε) = L(−diag(y)Ax− diag(y)Aε)

= L(−diag(y)Ax) + 〈∇L(−diag(y)Ax), −diag(y)Aε〉+ o(|| diag(y)Aε||).

Using the fact that o(|| diag(y)Aε||) = o(||ε||), one obtains

f(x+ ε) = f(x) + 〈∇L(−diag(y)Ax), −diag(y)Aε〉+ o(||ε||)
= f(x) + 〈−A> diag(y)∇L(−diag(y)Ax), ε〉+ o(||ε||),

where we have used the fact that (AB)> = B>A> and that diag(y)> = diag(y). This shows that

∇f(x) = −A> diag(y)∇L(−diag(y)Ax).

Since L(z) =
∑
i `(zi), one has ∇L(z) = (`′(zi))

n
i=1. For instance, for the logistic classification method,

`(u) = log(1 + exp(u)) so that `′(u) = eu

1+eu ∈ [0, 1] (which can be interpreted as a probability of predicting
+1).

3.6 Chain Rule

One can formalize the previous computation, if f(x) = g(Bx) with B ∈ Rq×p and g : Rq → R, then

f(x+ ε) = g(Bx+Bε) = g(Bx) + 〈∇g(Bx), Bε〉+ o(||Bε||) = f(x) + 〈ε, B>∇g(Bx)〉+ o(||ε||),

which shows that
∇(g ◦B) = B> ◦ ∇g ◦B (11)

where “◦” denotes the composition of functions.
To generalize this to composition of possibly non-linear functions, one needs to use the notion of differ-

ential. For a function F : Rp → Rq, its differentiable at x is a linear operator ∂F (x) : Rp → Rq, i.e. it can

9

Figure 8: Left: First order Taylor expansion in 1-D and 2-D. Right: orthogonality of gradient and level sets
and schematic of the proof.

be represented as a matrix (still denoted ∂F (x)) ∂F (x) ∈ Rq×p. The entries of this matrix are the partial
differential, denoting F (x) = (F1(x), . . . , Fq(x)),

∀ (i, j) ∈ {1, . . . , q} × {1, . . . , p}, [∂F (x)]i,j
def.
=

∂Fi(x)

∂xj
.

The function F is then said to be differentiable at x if and only if one has the following Taylor expansion

F (x+ ε) = F (x) + [∂F (x)](ε) + o(||ε||). (12)

where [∂F (x)](ε) is the matrix-vector multiplication. As for the definition of the gradient, this matrix is the
only one that satisfies this expansion, so it can be used as a way to compute this differential in practice.

For the special case q = 1, i.e. if f : Rp → R, then the differential ∂f(x) ∈ R1×p and the gradient
∇f(x) ∈ Rp×1 are linked by equating the Taylor expansions (12) and (7)

∀ ε ∈ Rp, [∂f(x)](ε) = 〈∇f(x), ε〉 ⇔ [∂f(x)](ε) = ∇f(x)>.

The differential satisfies the following chain rule

∂(G ◦H)(x) = [∂G(H(x))]× [∂H(x)]

where “×” is the matrix product. For instance, if H : Rp → Rq and G = g : Rq 7→ R, then f = g◦H : Rp → R
and one can compute its gradient as follow

∇f(x) = (∂f(x))> = ([∂g(H(x))]× [∂H(x)])
>

= [∂H(x)]> × [∂g(H(x))]> = [∂H(x)]> ×∇g(H(x)).

When H(x) = Bx is linear, one recovers formula (11).

4 Gradient Descent Algorithm

4.1 Steepest Descent Direction

The Taylor expansion (7) computes an affine approximation of the function f near x, since it can be
written as

f(z) = Tx(z) + o(||x− z||) where Tx(z)
def.
= f(x) + 〈∇f(x), z − x〉,

see Fig. 8. First order methods operate by locally replacing f by Tx.
The gradient ∇f(x) should be understood as a direction along which the function increases. This means

that to improve the value of the function, one should move in the direction −∇f(x). Given some fixed x,
let us look as the function f along the 1-D half line

τ ∈ R+ = [0,+∞[7−→ f(x− τ∇f(x)) ∈ R.

10

If f is differentiable at x, one has

f(x− τ∇f(x)) = f(x)− τ〈∇f(x), ∇f(x)〉+ o(τ) = f(x)− τ ||∇f(x)||2 + o(τ).

So there are two possibility: either ∇f(x) = 0, in which case we are already at a minimum (possibly a local
minimizer if the function is non-convex) or if τ is chosen small enough,

f(x− τ∇f(x)) < f(x)

which means that moving from x to x− τ∇f(x) has improved the objective function.

Remark 2 (Orthogonality to level sets). The level sets of f are the sets of point sharing the same value of
f , i.e. for any s ∈ R

Ls
def.
= {x ; f(x) = s} .

At some x ∈ Rp, denoting s = f(x), then x ∈ Ls (x belong to its level set). The gradient vector ∇f(x) is
orthogonal to the level set (as shown on Fig. 8 right), and points toward level set of higher value (which is
consistent with the previous computation showing that it is a valid ascent direction). Indeed, lets consider

around x inside Ls a smooth curve of the form t ∈ R 7→ c(t) where c(0) = x. Then the function h(t)
def.
= f(c(t))

is constant h(t) = s since c(t) belong to the level set. So h′(t) = 0. But at the same time, we can compute
its derivate at t = 0 as follow

h(t) = f(c(0) + tc′(0) + o(t)) = h(0) + δ〈c′(0), ∇f(c(0))〉+ o(t)

i.e. h′(0) = 〈c′(0), ∇f(x)〉 = 0, so that ∇f(x) is orthogonal to the tangent c′(0) of the curve c, which lies in
the tangent plane of Ls (as shown on Fig. 8, right). Since the curve c is arbitrary, the whole tangent plane
is thus orthogonal to ∇f(x).

Remark 3 (Local optimal descent direction). One can prove something even stronger, that among all possible

direction u with ||u|| = r, r ∇f(x)
||∇f(x)|| becomes the optimal one as r → 0 (so for very small step this is locally

the best choice), more precisely,
1

r
argmin
||u||=r

f(x+ u)
r→0−→ − ∇f(x)

||∇f(x)||
.

Indeed, introducing a Lagrange multiplier λ ∈ R for this constraint optimization problem, one obtains that

the optimal u satisfies ∇f(x + u) = λu and ||u|| = r. Thus u
r = ± ∇f(x+u)

||∇f(x+u)|| , and assuming that ∇f is

continuous, when ||u|| = r → 0, this converges to u
||u|| = ± ∇f(x)

||∇f(x)|| . The sign ± should be +1 to obtain a

maximizer and −1 for the minimizer.

4.2 Gradient Descent

The gradient descent algorithm reads, starting with some x0 ∈ Rp

xk+1
def.
= xk − τk∇f(xk) (13)

where τk > 0 is the step size (also called learning rate). For a small enough τk, the previous discussion shows
that the function f is decaying through the iteration. So intuitively, to ensure convergence, τk should be
chosen small enough, but not too small so that the algorithm is as fast as possible. In general, one use a fix
step size τk = τ , or try to adapt τk at each iteration (see Fig. 9).

Remark 4 (Greedy choice). Although this is in general too costly to perform exactly, one can use a “greedy”
choice, where the step size is optimal at each iteration, i.e.

τk
def.
= argmin

τ
h(τ)

def.
= f(xk − τ∇f(xk)).

11

Figure 9: Influence of τ on the gradient descent (left) and optimal step size choice (right).

Here h(τ) is a function of a single variable. One can compute the derivative of h as

h(τ + δ) = f(xk − τ∇f(xk)− δ∇f(xk)) = f(xk − τ∇f(xk))− 〈∇f(xk − τ∇f(xk)), ∇f(xk)〉+ o(δ).

One note that at τ = τk, ∇f(xk − τ∇f(xk)) = ∇f(xk+1) by definition of xk+1 in (13). Such an optimal
τ = τk is thus characterized by

h′(τk) = −〈∇f(xk), ∇f(xk+1)〉 = 0.

This means that for this greedy algorithm, two successive descent direction ∇f(xk) and ∇f(xk+1) are
orthogonal (see Fig. 9).

5 Convergence Analysis

5.1 Quadratic Case

Convergence analysis for the quadratic case. We first analyze this algorithm in the case of the
quadratic loss, which can be written as

f(x) =
1

2
||Ax− y||2 =

1

2
〈Cx, x〉 − 〈x, b〉+ cst where

{
C

def.
= A>A ∈ Rp×p,

b
def.
= A>y ∈ Rp.

We already saw that in (9) if ker(A) = {0}, which is equivalent to C being invertible, then there exists a
single global minimizer x? = (A>A)−1A>y = C−1u.

Note that a function of the form 1
2 〈Cx, x〉 − 〈x, b〉 is convex if and only if the symmetric matrix C is

positive semi-definite, i.e. that all its eigenvalues are non-negative (as already seen in (10)).

Proposition 4. For f(x) = 〈Cx, x〉−〈b, x〉 (C being symmetric semi-definite positive) with the eigen-values
of C upper-bounded by L and lower-bounded by µ > 0, assuming there exists (τmin, τmax) such that

0 < τmin 6 τ` 6 τ̃max <
2

L

then there exists 0 6 ρ̃ < 1 such that

||xk − x?|| 6 ρ̃`||x0 − x?||. (14)

The best rate ρ̃ is obtained for

τ` =
2

L+ µ
=⇒ ρ̃

def.
=

L− µ
L+ µ

= 1− 2ε

1 + ε
where ε

def.
= µ/L. (15)

12

Figure 10: Contraction constant h(τ) for a quadratic function (right).

Proof. One iterate of gradient descent reads

xk+1 = xk − τ`(Cxk − b).

Since the solution x? (which by the way is unique by strict convexity) satisfy the first order condition
Cx? = b, it gives

xk+1 − x? = xk − x? − τ`C(xk − x?) = (Idp − τ`C)(xk − x?).

If S ∈ Rp×p is a symmetric matrix, one has

||Sz|| 6 ||S||op||z|| where ||S||op
def.
= max

k
|λk(S)|,

where λk(S) are the eigenvalues of S and σk(S)
def.
= |λk(S)| are its singular values. Indeed, S can be

diagonalized in an orthogonal basis U , so that S = U diag(λk(S))U>, and S>S = S2 = U diag(λk(S)2)U>

so that

||Sz||2 = 〈S>Sz, z〉 = 〈U diag(λk)U>z, z〉 = 〈diag(λ2
k)U>z, U>z〉

=
∑
i

λ2
k(U>z)2

k 6 max
k

(λ2
k)||U>z||2 = max

k
(λ2
k)||z||2.

Applying this to S = Idp − τ`C, one has

h(τ)
def.
= ||Idp − τ`C||op = max

k
|λk(Idp − τ`C)| = max

k
|1− τ`λk(C)| = max(|1− τ`σmax(C)|, |1− τσmin(C)|)

For a quadratic function, one has σmin(C) = µ, σmax(C) = L. Figure 10, right, shows a display of h(τ). One
has that for 0 < τ < 2/L, h(τ) < 1. The optimal value is reached at τ? = 2

L+µ and then

h(τ?) =

∣∣∣∣.1− 2L

L+ µ

∣∣∣∣ =
L− µ
L+ µ

.

Note that when the condition number ξ
def.
= µ/L � 1 is small (which is the typical setup for ill-posed

problems), then the contraction constant appearing in (15) scales like

ρ̃ ∼ 1− 2ξ. (16)

The quantity ε in some sense reflects the inverse-conditioning of the problem. For quadratic function, it
indeed corresponds exactly to the inverse of the condition number (which is the ratio of the largest to
smallest singular value). The condition number is minimum and equal to 1 for orthogonal matrices.

13

The error decay rate (14), although it is geometrical O(ρk) is called a “linear rate” in the optimization
literature. It is a “global” rate because it hold for all k (and not only for large enough k).

If ker(A) 6= {0}, then C is not definite positive (some of its eigenvalues vanish), and the set of solution is
infinite. One can however still show a linear rate, by showing that actually the iterations xk are orthogonal to
ker(A) and redo the above proof replacing µ by the smaller non-zero eigenvalue of C. This analysis however
leads to a very poor rate ρ (very close to 1) because µ can be arbitrary close to 0. Furthermore, such a proof
does not extends to non-quadratic functions. It is thus necessary to do a different theoretical analysis, which
only shows a sublinear rate on the objective function f itself rather than on the iterates xk.

Proposition 5. For f(x) = 〈Cx, x〉 − 〈b, x〉, assuming the eigenvalue of C are bounded by L, then if
0 < τk = τ < 2/L is constant, then

f(xk)− f(x?) 6
dist(x0, argmin f)2

τ8k
.

where
dist(x0, argmin f)

def.
= min

x?∈argmin f
||x0 − x?||.

Proof. We have Cx? = b for any minimizer x? and xk+1 = xk − τ(Cxk − b) so that as before

xk − x? = (Idp − τC)k(x0 − x?).

Now one has
1

2
〈C(xk − x?, xk − x?〉 =

1

2
〈Cxk, xk〉 − 〈Cxk, x?〉+

1

2
〈Cx?, x?〉

and we have 〈Cxk, x?〉 = 〈xk, Cx?〉 = 〈xk, b〉 and also 〈Cx?, x?〉 = 〈x?, x〉 so that

1

2
〈C(xk − x?, xk − x?〉 =

1

2
〈Cxk, xk〉 − 〈xk, b〉+

1

2
〈x?, b〉 = f(xk)− f(x?)

where we have used the fact that

f(x?) =
1

2
〈(A>A)(A>A)−1b, (A>A)−1b〉 − 〈(A>A)−1b, b〉 =⇒ 1

2
〈x?, b〉 = −f(x?).

This thus implies

f(xk)− f(x?) =
1

2
〈(Idp − τC)kC(Idp − τC)k(x0 − x?), x0 − x?〉 6

σmax(Mk)

2
min
x?
||x0 − x?||2

where we have denoted
Mk

def.
= (Idp − τC)kC(Idp − τC)k.

One has

σ`(Mk) = σ`(C)(1− τσ`(C))2k 6
1

τ4k

since one can show that (setting t = τσ`(C) 6 1 because of the hypotheses)

∀ t ∈ [0, 1], (1− t)2kt 6
1

4k
.

Indeed, one has

(1− t)2kt 6 (e−t)2kt =
1

2k
(2kt)e−2kt 6

1

2k
sup
u>0

ue−u =
1

2ek
6

1

4k
.

14

5.2 General Case

We detail the theoretical analysis of convergence for general smooth convex functions. The general idea
is to replace the linear operator C involved in the quadratic case by the second order derivative (the hessian
matrix).

Hessian. If the function is twice differentiable along the axes, the hessian matrix is

(∂2f)(x) =

(
∂2f(x)

∂xi∂xj

)
16i,j6p

∈ Rp×p.

Where recall that ∂2f(x)
∂xi∂xj

is the differential along direction xj of the function x 7→ ∂f(x)
∂xi

. We also recall that

∂2f(x)
∂xi∂xj

= ∂2f(x)
∂xj∂xi

so that ∂2f(x) is a symmetric matrix.

A differentiable function f is said to be twice differentiable at x if

f(x+ ε) = f(x) + 〈∇f(x), ε〉+
1

2
〈∂2f(x)ε, ε〉+ o(||ε||2). (17)

This means that one can approximate f near x by a quadratic function. The hessian matrix is uniquely
determined by this relation, so that if one is able to write down an expansion with some matrix H

f(x+ ε) = f(x) + 〈∇f(x), ε〉+
1

2
〈Hε, ε〉+ o(||ε||2).

then equating this with the expansion (17) ensure that ∂2f(x) = H. This is thus a way to actually determine
the hessian without computing all the p2 partial derivative. This Hessian can equivalently be obtained by
performing an expansion (i.e. computing the differential) of the gradient since

∇f(x+ ε) = ∇f(x) + [∂2f(x)](ε) + o(||ε||)

where [∂2f(x)](ε) ∈ Rp denotes the multiplication of the matrix ∂2f(x) with the vector ε.
One can show that a twice differentiable function f on Rp is convex if and only if for all x the symmetric

matrix ∂2f(x) is positive semi-definite, i.e. all its eigenvalues are non-negative. Furthermore, if these
eigenvalues are strictly positive then f is strictly convex (but the converse is not true, for instance x4 is
strictly convex on R but its second derivative vanishes at x = 0).

For instance, for a quadratic function f(x) = 〈Cx, x〉 − 〈x, u〉, one has ∇f(x) = Cx − u and thus
∂2f(x) = C (which is thus constant). For the classification function, one has

∇f(x) = −A> diag(y)∇L(−diag(y)Ax).

and thus

∇f(x+ ε) = −A> diag(y)∇L(− diag(y)Ax−− diag(y)Aε)

= ∇f(x)−A> diag(y)[∂2L(−diag(y)Ax)](−diag(y)Aε)

Since ∇L(u) = (`′(ui)) one has ∂2L(u) = diag(`′′(ui)). This means that

∂2f(x) = A> diag(y)× diag(`′′(− diag(y)Ax))× diag(y)A.

One verifies that this matrix is symmetric and positive if ` is convex and thus `′′ is positive.

Remark 5 (Second order optimality condition). The first use of Hessian is to decide wether a point x?

with ∇f(x?) is a local minimum or not. Indeed, if ∂2f(x?) is a positive matrix (i.e. its eigenvalues are
strictly positive), then x? is a strict local minimum. Note that if ∂2f(x?) is only non-negative (i.e. some its
eigenvalues might vanish) then one cannot deduce anything (such as for instance x3 on R). Conversely, if x?

is a local minimum then ∂2f(x)

15

Remark 6 (Second order algorithms). A second use, is to be used in practice to define second order method
(such as Newton’s algorithm), which converge faster than gradient descent, but are more costly. The gener-
alized gradient descent reads

xk+1 = xk −Hk∇f(xk)

where Hk ∈ Rp×p is a positive symmetric matrix. One recovers the gradient descent when using Hk = τkIdp,
and Newton’s algorithm corresponds to using the inverse of the Hessian Hk = [∂2f(xk)]−1. Note that

f(xk) = f(xk)− 〈Hk∇f(xk), ∇f(xk)〉+ o(||Hk∇f(xk)||).

Since Hk is positive, if xk is not a minimizer, i.e. ∇f(xk) 6= 0, then 〈Hk∇f(xk), ∇f(xk)〉 > 0. So if Hk is
small enough one has a valid descent method in the sense that f(xk+1) < f(xk). It is not the purpose of
this chapter to explain in more detail these type of algorithm.

The last use of Hessian, that we explore next, is to study theoretically the convergence of the gradient
descent. One simply needs to replace the boundedness of the eigenvalue of C of a quadratic function by a
boundedness of the eigenvalues of ∂2f(x) for all x. Roughly speaking, the theoretical analysis of the gradient
descent for a generic function is obtained by applying this approximation and using the proofs of the previous
section.

Smoothness and strong convexity. One also needs to quantify the
smoothness of f . This is enforced by requiring that the gradient is L-Lipschitz,
i.e.

∀ (x, x′) ∈ (Rp)2, ||∇f(x)−∇f(x′)|| 6 L||x− x′||. (RL)

In order to obtain fast convergence of the iterates themselve, it is needed that
the function has enough “curvature” (i.e. is not too flat), which corresponds
to imposing that f is µ-strongly convex

∀ (x, x′),∈ (Rp)2, 〈∇f(x)−∇f(x′), x− x′〉 > µ||x− x′||2. (Sµ)

The following proposition express these conditions as constraints on the hessian for C2 functions.

Proposition 6. Conditions (RL) and (Sµ) imply

∀ (x, x′), f(x′) + 〈∇f(x), x′ − x〉+
µ

2
||x− x′||2 6 f(x) 6 f(x′) + 〈∇f(x′), x′ − x〉+

L

2
||x− x′||2. (18)

If f is of class C2, conditions (RL) and (Sµ) are equivalent to

∀x, µIdp � ∂2f(x) � LIdp (19)

where ∂2f(x) ∈ Rp×p is the Hessian of f , and where � is the natural order on symmetric matrices, i.e.

A � B ⇐⇒ ∀x ∈ Rp, 〈Au, u〉 6 〈Bu, u〉.

Proof. We prove (18), using Taylor expansion with integral remain

f(x′)− f(x) =

∫ 1

0

〈∇f(xt), x
′ − x〉dt = 〈∇f(x), x′ − x〉+

∫ 1

0

〈∇f(xt)−∇f(x), x′ − x〉dt

where xt
def.
= x+ t(x′ − x). Using Cauchy-Schwartz, and then the smoothness hypothesis (RL)

f(x′)− f(x) 6 〈∇f(x), x′ − x〉+

∫ 1

0

L||xt − x||||x′ − x||dt 6 〈∇f(x), x′ − x〉+ L||x′ − x||2
∫ 1

0

tdt

which is the desired upper-bound. Using directly (Sµ) gives

f(x′)− f(x) = 〈∇f(x), x′ − x〉+

∫ 1

0

〈∇f(xt)−∇f(x),
xt − x
t
〉dt > 〈∇f(x), x′ − x〉+ µ

∫ 1

0

1

t
||xt − x||2dt

which gives the desired result since ||xt − x||2/t = t||x′ − x||2.

16

The relation (18) shows that a smooth (resp. strongly convex) functional is bounded by bellow (resp.
above) by a quadratic tangential majorant (resp. minorant).

Condition (19) thus reads that the singular values of ∂2f(x) should be contained in the interval [µ,L].
The upper bound is also equivalent to ||∂2f(x)||op 6 L where || · ||op is the operator norm, i.e. the largest
singular value. In the special case of a quadratic function of the form 〈Cx, x〉−〈b, x〉 (recall that necessarily
C is semi-definite symmetric positive for this function to be convex), ∂2f(x) = C is constant, so that [µ,L]
can be chosen to be the range of the eigenvalues of C.

Convergence analysis. We now give convergence theorem for a general convex function. On contrast to
quadratic function, if one does not assumes strong convexity, one can only show a sub-linear rate on the
function values (and no rate at all on the iterates themselves). It is only when one assume strong convexity
that linear rate is obtained. Note that in this case, the solution of the minimization problem is not necessarily
unique.

Theorem 1. If f satisfy conditions (RL), assuming there exists (τmin, τmax) such that

0 < τmin 6 τ` 6 τmax <
2

L
,

then xk converges to a solution x? of (1) and there exists C > 0 such that

f(xk)− f(x?) 6
C

`+ 1
. (20)

If furthermore f is µ-strongly convex, then there exists 0 6 ρ < 1 such that ||xk − x?|| 6 ρ`||x0 − x?||.

Proof. In the case where f is not strongly convex, we only prove (20) since the proof that xk converges
is more technical. Note indeed that if the minimizer x? is non-unique, then it might be the case that the
iterate xk “cycle” while approaching the set of minimizer, but actually convexity of f prevents this kind of
pathological behavior. For simplicity, we do the proof in the case τ` = 1/L, but it extends to the general
case. The L-smoothness property imply (18), which reads

f(xk+1) 6 f(xk) + 〈∇f(xk), xk+1 − xk〉+
L

2
||xk+1 − xk||2.

Using the fact that xk+1 − xk = − 1
L∇f(xk), one obtains

f(xk+1) 6 f(xk)− 1

L
||∇f(xk)||2 +

1

2L
||∇f(xk)||2 6 f(xk)− 1

2L
||∇f(xk)||2 (21)

This shows that (f(xk))` is a decaying sequence. By convexity

f(xk) + 〈∇f(xk), x? − xk〉 6 f(x?)

and plugging this in (21) shows

f(xk+1) 6 f(x?)− 〈∇f(xk), x? − xk〉 −
1

2L
||∇f(xk)||2 (22)

= f(x?) +
L

2

(
||xk − x?||2 − ||xk − x? −

1

L
∇f(xk)||2

)
(23)

= f(x?) +
L

2

(
||xk − x?||2 − ||x? − xk+1||2

)
. (24)

Summing these inequalities for ` = 0, . . . , k, one obtains

k∑
`=0

f(xk+1)− (k + 1)f(x?) 6
L

2

(
||x0 − x?||2 − ||x(k+1) − x?||2

)

17

and since f(xk+1) is decaying
∑k
`=0 f(xk+1) > (k + 1)f(x(k+1)), thus

f(x(k+1))− f(x?) 6
L||x0 − x?||2

2(k + 1)

which gives (20) for C
def.
= L||x0 − x?||2/2.

If we now assume f is µ-strongly convex, then, using ∇f(x?) = 0, one has µ
2 ||x

?− x||2 6 f(x)− f(x?) for
all x. Re-manipulating (24) gives

µ

2
||xk+1 − x?||2 6 f(xk+1)− f(x?) 6

L

2

(
||xk − x?||2 − ||x? − xk+1||2

)
,

and hence

||xk+1 − x?|| 6

√
L

L+ µ
||xk+1 − x?||, (25)

which is the desired result.

Note that in the low conditioning setting ε� 1, one retrieve a dependency of the rate (25) similar to the
one of quadratic functions (16), indeed√

L

L+ µ
= (1 + ε)−

1
2 ∼ 1− 1

2
ε.

6 Regularization

When the number n of sample is not large enough with respect to the dimension p of the model, it makes
sense to regularize the empirical risk minimization problem.

6.1 Penalized Least Squares

For the sake of simplicity, we focus here on regression and consider

min
x∈Rp

fλ(x)
def.
=

1

2
||Ax− y||2 + λR(x) (26)

where R(x) is the regularizer and λ > 0 the regularization parameter. The regularizer enforces some prior
knowledge on the weight vector x (such as small amplitude or sparsity, as we detail next) and λ needs to be
tuned using cross-validation.

We assume for simplicity that R is positive and coercive, i.e. R(x)→ +∞ as ||x|| → +∞. The following
proposition that in the small λ limit, the regularization select a sub-set of the possible minimizer. This is
especially useful when ker(A) 6= 0, i.e. the equation Ax = y has an infinite number of solutions.

Proposition 7. If (xλk
)k is a sequence of minimizers of fλ, then this sequence is bounded, and any accu-

mulation x? is a solution of the constrained optimization problem

min
Ax=y

R(x). (27)

Proof. Let x0 be so that Ax0 = y, then by optimality of xλk

1

2
||Axλk

− y||2 + λkR(xλk
) 6 λkR(x0). (28)

Since all the term are positive, one has R(xλk
) 6 R(x0) so that (xλk

)k is bounded by coercivity of R. Then
also ||Axλk

− y|| 6 λkR(x0), and passing to the limit, one obtains Ax? = y. And passing to the limit in
R(xλk

) 6 R(x0) one has R(x?) 6 R(x0) which shows that x? is a solution of (27).

18

6.2 Ridge Regression

Ridge regression is by far the most popular regularizer, and corresponds to using R(x) = ||x||2Rp . Since it
is strictly convex, the solution of (26) is unique

xλ
def.
= argmin

x∈Rp

fλ(x) =
1

2
||Ax− y||2Rn + λ||x||2Rp .

One has
∇fλ(x) = A>(Axλ − y) + λxλ = 0

so that xλ depends linearly on y and can be obtained by solving a linear system. The following proposition
shows that there are actually two alternate formula.

Proposition 8. One has

xλ = (A>A+ λIdp)
−1A>y, (29)

= A>(AA> + λIdn)−1y. (30)

Proof. Denoting B
def.
= (A>A + λIdp)

−1A> and C
def.
= A>(AA> + λIdn)−1, one has (A>A + λIdp)B = A>

while

(A>A+ λIdp)C = (A>A+ λIdp)A
>(AA> + λIdn)−1 = A>(AA> + λIdn)(AA> + λIdn)−1 = A>.

Since A>A+ λIdp is invertible, this gives the desired result.

The solution of these linear systems can be computed using either a direct method such as Cholesky
factorization or an iterative method such as a conjugate gradient (which is vastly superior to the vanilla
gradient descent scheme).

If n > p, then one should use (29) while if n < p one should rather use (30).

Pseudo-inverse. As λ→ 0, then xλ → x0 which is, using (27)

argmin
Ax=y

||x||.

If ker(A) = {0} (overdetermined setting), A>A ∈ Rp×p is an invertible matrix, and (A>A + λIdp)
−1 →

(A>A)−1, so that

x0 = A+y where A+ def.
= (A>A)−1A>.

Conversely, if ker(A>) = {0}, or equivalently Im(A) = Rn (undertermined setting) then one has

x0 = A+y where A+ def.
= A>(AA>)−1.

In the special case n = p and A is invertible, then both definitions of A+ coincide, and A+ = A−1. In the
general case (where A is neither injective nor surjective), A+ can be computed using the Singular Values
Decomposition (SVD). The matrix A+ is often called the Moore-Penrose pseudo-inverse.

6.3 Lasso

The Lasso corresponds to using a `1 penalty

R(x) = ||x||1
def.
=

p∑
k=1

|xk|.

19

q = 1q = 0 q = 2q = 1 5.q = 0 5.

Figure 11: `q balls {x ;
∑
k |xk|q 6 1} for varying q.

The underlying idea is that solutions xλ of a Lasso problem

xλ ∈ argmin
x∈Rp

fλ(x) =
1

2
||Ax− y||2Rn + λ||x||1

are sparse, i.e. solutions xλ (which might be non-unique) have many zero entries. To get some insight about
this, Fig. 11 display the `q “balls” which shrink toward the axes as q → 0 (thus enforcing more sparsity) but
are non-convex for q < 1.

This can serve two purposes: (i) one knows before hand that the solution is expected to be sparse, which
is the case for instance in some problems in imaging, (ii) one want to perform model selection by pruning
some of the entries in the feature (to have simpler predictor, which can be computed more efficiently at test
time, or that can be more interpretable). For typical ML problems though, the performance of the Lasso
predictor is usually not better than the one obtained by Ridge.

Minimizing f(x) is still a convex problem, but R is non-smooth, so that one cannot use a gradient descent.
Section 6.4 shows how to modify the gradient descent to cope with this issue. In general, solutions xλ cannot
be computed in closed form, excepted when the design matrix A is orthogonal.

Figure 12: Evolution with λ of the function F (x)
def.
= 1

2 || · −y||
2 + λ| · |.

Proposition 9. When n = p and A = Idn, one has

argmin
x∈Rp

1

2
||x− y||2 + λ||x1|| = Sλ(x) where Sλ(x) = (sign(xk) max(|xk| − λ, 0))k

Proof. One has fλ(x) =
∑
k

1
2 (xk − yk)2 + λ|xk|, so that one needs to find the minimum of the 1-D function

x ∈ R 7→ 1
2 (x− y)2 + λ|x|. We can do this minimization “graphically” as shown on Fig. 12. For x > 0, one

has F ′(x) = x− y + λ wich is 0 at x = y − λ. The minimum is at x = y − λ for λ 6 y, and stays at 0 for all
λ > y. The problem is symmetric with respect to the switch x 7→ −x.

Here, Sλ is the celebrated soft-thresholding non-linear function.

20

6.4 Iterative Soft Thresholding

We now derive an algorithm using a classical technic of surrogate function minimization. We aim at
minimizing

f(x)
def.
=

1

2
||y −Ax||2 + λ||x||1

and we introduce for any fixed x′ the function

fτ (x, x′)
def.
= f(x)− 1

2
||Ax−Ax′||2 +

1

2τ
||x− x′||2.

We notice that fτ (x, x) = 0 and one the quadratic part of this function reads

K(x, x′)
def.
= −1

2
||Ax−Ax′||2 +

1

2τ
||x− x′|| = 1

2
〈
(

1

τ
IdN −A>A

)
(x− x′), x− x′〉.

This quantity K(x, x′) is positive if λmax(A>A) 6 1/τ (maximum eigenvalue), i.e. τ 6 1/||A||2op, where we
recall that ||A||op = σmax(A) is the operator (algebra) norm. This shows that fτ (x, x′) is a valid surrogate
functional, in the sense that

f(x) 6 fτ (x, x′), fτ (x, x′) = 0, and f(·)− fτ (·, x′) is smooth.

We also note that this majorant fτ (·, x′) is convex. This leads to define

xk+1
def.
= argmin

x
fτ (x, xk) (31)

which by construction satisfies
f(xk+1) 6 f(xk).

Proposition 10. The iterates xk defined by (31) satisfy

xk+1 = Sλτ
(
xk − τA>(Axk − y)

)
(32)

where Sλ(x) = (sλ(xm))m where sλ(r) = sign(r) max(|r| − λ, 0) is the soft thresholding operator.

Proof. One has

fτ (x, x′) =
1

2
||Ax− y||2 − 1

2
||Ax−Ax′||2 +

1

2τ
||x− x′||2 + λ||x||1

= C +
1

2
||Ax||2 − 1

2
||Ax||2 +

1

2τ
||x||2 − 〈Ax, y〉+ 〈Ax, Ax′〉 − 1

τ
〈x, x′〉+ λ||x||1

= C +
1

2τ
||x||2 + 〈x, −A>y +AA>x′ − 1

τ
x′〉+ λ||x||1

= C ′ +
1

τ

(
1

2
||x− (x′ − τA>(Ax′ − y))||2 + τλ||x||1.

)
Proposition (9) shows that the minimizer of fτ (x, x′) is thus indeed Sλτ (x′− τA>(Ax′− y)) as claimed.

Equation (32) defines the iterative soft-thresholding algorithm. It follows from a valid convex surrogate
function if τ 6 1/||A||2, but one can actually shows that it converges to a solution of the Lasso as soon as
τ < 2/||A||2, which is exactly as for the classical gradient descent.

7 Stochastic Optimization

We detail some important stochastic Gradient Descent methods, which enable to perform optimization
in the setting where the number of samples n is large and even infinite.

21

7.1 Minimizing Sums and Expectation

A large class of functionals in machine learning can be expressed as minimizing large sums of the form

min
x∈Rp

f(x)
def.
=

1

n

n∑
i=1

fi(x) (33)

or even expectations of the form

min
x∈Rp

f(x)
def.
= Ez∼π(f(x, z)) =

∫
Z
f(x, z)dπ(z). (34)

Problem (33) can be seen as a special case of (34), when using a discrete empirical uniform measure π =∑n
i=1 δi and setting f(x, i) = fi(x). One can also viewed (33) as a discretized “empirical” version of (34)

when drawing (zi)i i.i.d. according to z and defining fi(x) = f(x, zi). In this setup, (33) converges to (34)
as n→ +∞.

A typical example of such a class of problems is empirical risk minimization for linear model, where in
these cases

fi(x) = `(〈ai, x〉, yi) and f(x, z) = `(〈a, x〉, y) (35)

for z = (a, y) ∈ Z = (A = Rp) × Y (typically Y = R or Y = {−1,+1} for regression and classification),
where ` is some loss function. We illustrate bellow the methods on binary logistic classification, where

L(s, y)
def.
= log(1 + exp(−sy)). (36)

But this extends to arbitrary parametric models, and in particular deep neural networks.
While some algorithms (in particular batch gradient descent) are specific to finite sums (33), the stochastic

methods we detail next work verbatim (with the same convergence guarantees) in the expectation case (34).
For the sake of simplicity, we however do the exposition for the finite sums case, which is sufficient in the
vast majority of cases. But one should keep in mind that n can be arbitrarily large, so it is not acceptable
in this setting to use algorithms whose complexity per iteration depend on n.

If the functions fi(x) are very similar (the extreme case being that they are all equal), then of course
there is a gain in using stochastic optimization (since in this case, ∇fi ≈ ∇f but ∇fi is n times cheaper).
But in general stochastic optimization methods are notÂ necessarily faster than batch gradient descent. If
n is not too large so that one afford the price of doing a few non-stochastic iterations, then deterministic
methods can be faster. But if n is so large that one cannot do even a single deterministic iteration, then
stochastic methods allow one to have a fine grained scheme by breaking the cost of determinstic iterations
in smaller chunks. Another advantage is that they are quite easy to parallelize.

7.2 Batch Gradient Descent (BGD)

The usual deterministic (batch) gradient descent (BGD) is studied in details in Section 4. Its iterations
read

xk+1 = xk − τk∇f(xk)

and the step size should be chosen as 0 < τmin < τk < τmax
def.
= 2/L where L is the Lipschitz constant of the

gradient ∇f . In particular, in this deterministic setting, this step size should not go to zero and this ensures
quite fast convergence (even linear rates if f is strongly convex).

The computation of the gradient in our setting reads

∇f(x) =
1

n

n∑
i=1

∇fi(x) (37)

so it typically has complexity O(np) if computing ∇fi has linear complexity in p.

22

200 400 600 800 1000 1200
0.56

0.58

0.6

0.62

E(wl)

200 400 600 800 1000 1200

-5

-4

-3

-2

log(E(wl) - min E)

200 400 600 800 1000 1200
0.56

0.58

0.6

0.62

E(wl)

200 400 600 800 1000 1200

-5

-4

-3

-2

log(E(wl) - min E)

f(xk) log10(f(xk)− f(x?))

Figure 13: Evolution of the error of the BGD for logistic classification.

For ERM-type functions of the form (35), one can do the Taylor expansion of fi

fi(x+ ε) = `(〈ai, x〉+ 〈ai, ε〉, yi) = `(〈ai, x〉, yi) + `′(〈ai, x〉, yi)〈ai, ε〉+ o(||ε||)
= fi(x) + 〈`′(〈ai, x〉, yi)ai, x〉+ o(||ε||),

where `(y, y′) ∈ R is the derivative with respect to the first variable, i.e. the gradient of the map y ∈ R 7→
L(y, y′) ∈ R. This computation shows that

∇fi(x) = `′(〈ai, x〉, yi)ai. (38)

For the logistic loss, one has

L′(s, y) = −s e−sy

1 + e−sy
.

7.3 Stochastic Gradient Descent (SGD)

Figure 14: Unbiased gradi-
ent estimate

For very large n, computing the full gradient ∇f as in (37) is prohibitive.
The idea of SGD is to trade this exact full gradient by an inexact proxy using a
single functional fi where i is drawn uniformly at random. The main idea that
makes this work is that this sampling scheme provides an unbiased estimate of
the gradient, in the sense that

Ei∇fi(x) = ∇f(x) (39)

where i is a random variable distributed uniformly in {1, . . . , n}.
Starting from some x0,the iterations of stochastic gradient descent (SGD)

read
xk+1 = xk − τk∇fi(k)(xk)

where, for each iteration index k, i(k) is drawn uniformly at random in {1, . . . , n}. It is important that the
iterates xk+1 are thus random vectors, and the theoretical analysis of the method thus studies wether this
sequence of random vectors converges (in expectation or in probability for instance) toward a deterministic
vector (minimizing f), and at which speed.

Figure 15:
Schematic view
of SGD iterates

Note that each step of a batch gradient descent has complexity O(np), while a step
of SGD only has complexity O(p). SGD is thus advantageous when n is very large, and
one cannot afford to do several passes through the data. In some situation, SGD can
provide accurate results even with k � n, exploiting redundancy between the samples.

A crucial question is the choice of step size schedule τk. It must tends to 0 in order
to cancel the noise induced on the gradient by the stochastic sampling. But it should
not go too fast to zero in order for the method to keep converging.

A typical schedule that ensures both properties is to have asymptotically τk ∼ k−1

for k → +∞. We thus propose to use

τk
def.
=

τ0
1 + k/k0

(40)

23

Figure 16: Display of a large number of trajectories k 7→ xk ∈ R generated by several runs of SGD. On the
top row, each curve is a trajectory, and the bottom row displays the corresponding density.

where k0 indicates roughly the number of iterations serving as a “warmup” phase.
Figure 16 shows a simple 1-D example to minimize f1(x) + f2(x) for x ∈ R and

f1(x) = (x−1)2 and f2(x) = (x+1)2. One can see how the density of the distribution of
xk progressively clusters around the minimizer x? = 0. Here the distribution of x0 is uniform on [−1/2, 1/2].

The following theorem shows the convergence in expectation with a 1/
√
k rate on the objective.

Theorem 2. We assume f is µ-strongly convex as defined in (Sµ) (i.e. Idp � ∂2f(x) if f is C2), and is
such that ||∇fi(x)||2 6 C2. For the step size choice τk = 1

µ(k+1) , one has

E(||xk − x?||2) 6
R

k + 1
where R = max(||x0 − x?||, C2/µ2), (41)

where E indicates an expectation with respect to the i.i.d. sampling performed at each iteration.

Proof. By strong convexity, one has

f(x?)− f(xk) > 〈∇f(xk), x? − xk〉+
µ

2
||xk − x?||2

f(xk)− f(x?) > 〈∇f(x?), xk − x?〉+
µ

2
||xk − x?||2.

Summing these two inequalities and using ∇f(x?) = 0 leads to

〈∇f(xk)−∇f(x?), xk − x?〉 = 〈∇f(xk), xk − x?〉 > µ||xk − x?||2. (42)

Considering only the expectation with respect to the ransom sample of i(k) ∼ ik, one has

Eik(||xk+1 − x?||2) = Eik(||xk − τk∇fik(xk)− x?||2)

= ||xk − x?||2 + 2τk〈Eik(∇fik(xk)), x? − xk〉+ τ2
kEik(||∇fik(xk)||2)

6 ||xk − x?||2 + 2τk〈∇f(xk)), x? − xk〉+ τ2
kC

2

where we used the fact (39) that the gradient is unbiased. Taking now the full expectation with respect to
all the other previous iterates, and using (42) one obtains

E(||xk+1 − x?||2) 6 E(||xk − x?||2)− 2µτkE(||xk − x?||2) + τ2
kC

2 = (1− 2µτk)E(||xk − x?||2) + τ2
kC

2. (43)

We show by recursion that the bound (41) holds. We denote εk
def.
= E(||xk − x?||2). Indeed, for k = 0, this it

is true that

ε0 6
max(||x0 − x?||, C2/µ2)

1
=
R

1
.

24

f(xk) log10(f(xk)− f(x?))

Figure 17: Evolution of the error of the SGD for logistic classification (dashed line shows BGD).

We now assume that εk 6 R
k+1 . Using (43) in the case of τk = 1

µ(k+1) , one has, denoting m = k + 1

εk+1 6 (1− 2µτk)εk + τ2
kC

2 =

(
1− 2

m

)
εk +

C2

(µm)2

6

(
1− 2

m

)
R

m
+

R

m2
=

(
1

m
− 1

m2

)
R =

m− 1

m2
R =

m2 − 1

m2

1

m+ 1
R 6

R

m+ 1

A weakness of SGD (as well as the SGA scheme studied next) is that it only weakly benefit from strong
convexity of f . This is in sharp contrast with BGD, which enjoy a fast linear rate for strongly convex
functionals, see Theorem 1.

Figure 17 displays the evolution of the energy f(xk). It overlays on top (black dashed curve) the conver-
gence of the batch gradient descent, with a careful scaling of the number of iteration to account for the fact
that the complexity of a batch iteration is n times larger.

7.4 Stochastic Gradient Descent with Averaging (SGA)

Stochastic gradient descent is slow because of the fast decay of τk toward zero. To improve somehow the
convergence speed, it is possible to average the past iterate, i.e. run a “classical” SGD on auxiliary variables
(x̃k)k

x̃(`+1) = x̃k − τk∇fi(k)(x̃k)

and output as estimated weight vector the Cesaro average

xk
def.
=

1

k

k∑
`=1

x̃`.

This defines the Stochastic Gradient Descent with Averaging (SGA) algorithm.
Note that it is possible to avoid explicitly storing all the iterates by simply updating a running average

as follow

xk+1 =
1

k
x̃k +

k − 1

k
xk.

In this case, a typical choice of decay is rather of the form

τk
def.
=

τ0

1 +
√
k/k0

.

Notice that the step size now goes much slower to 0, at rate k−1/2.
Typically, because the averaging stabilizes the iterates, the choice of (k0, τ0) is less important than for

SGD.
Bach proves that for logistic classification, it leads to a faster convergence (the constant involved are

smaller) than SGD, since on contrast to SGD, SGA is adaptive to the local strong convexity of E.

25

Figure 18: Evolution of log10(f(xk)− f(x?)) for SGD, SGA and SAG.

7.5 Stochastic Averaged Gradient Descent (SAG)

For problem size n where the dataset (of size n × p) can fully fit into memory, it is possible to further
improve the SGA method by bookkeeping the previous gradients. This gives rise to the Stochastic Averaged
Gradient Descent (SAG) algorithm.

We store all the previously computed gradients in (Gi)ni=1, which necessitates O(n × p) memory. The
iterates are defined by using a proxy g for the batch gradient, which is progressively enhanced during the
iterates.

The algorithm reads

xk+1 = xk − τg where

h← ∇fi(k)(x̃k),
g ← g −Gi(k) + h,
Gi(k) ← h.

Note that in contrast to SGD and SGA, this method uses a fixed step size τ . Similarly to the BGD, in order
to ensure convergence, the step size τ should be of the order of 1/L where L is the Lipschitz constant of f .

This algorithm improves over SGA and SGD since it has a convergence rate of O(1/k) as does BGD.
Furthermore, in the presence of strong convexity (for instance when X is injective for logistic classification),
it has a linear convergence rate, i.e.

E(f(xk))− f(x?) = O
(
ρk
)
,

for some 0 < ρ < 1.
Note that this improvement over SGD and SGA is made possible only because SAG explicitly uses the

fact that n is finite (while SGD and SGA can be extended to infinite n and more general minimization of
expectations (34)).

Figure 18 shows a comparison of SGD, SGA and SAG.

8 Multi-Layers Perceptron

In this section, we study the simplest example of non-linear parametric models, namely Multi-Layers
Perceptron (MLP) with a single hidden layer (so they have in total 2 layers). Perceptron (with no hidden
layer) corresponds to the linear models studied in the previous sections. MLP with more layers are obtained
by stacking together several such simple MLP, and are studied in Section 9.5, since the computation of their
derivatives is very suited to automatic-differentiation methods.

8.1 MLP and its derivative

The basic MLP a 7→ hW,u(a) takes as input a feature vector a ∈ Rp, computes an intermediate hidden
representation b = Wa ∈ Rq using q “neurons” stored as the rows wk ∈ Rp of the weight matrix W ∈ Rq×p,

26

passes these through a non-linearity ρ : R → R, i.e. ρ(b) = (ρ(bk))qk=1 and then outputs a scalar value as a
linear combination with output weights u ∈ Rq, i.e.

hW,u(a) = 〈ρ(Wa), u〉 =

q∑
k=1

ukρ((Wa)k) =

q∑
k=1

ukρ(〈a, wk〉).

This function hW,u(·) is thus a weighted sum of q “ridge functions” ρ(〈·, wk〉). These functions are constant
in the direction orthogonal to the neuron wk and have a profile defined by ρ.

The most popular non-linearities are sigmoid functions such as

ρ(r) =
er

1 + er
and ρ(r) =

1

π
atan(r) +

1

2

and the rectified linear unit (ReLu) function ρ(r) = max(r, 0).
One often add a bias term in these models, and consider functions of the form ρ(〈·, wk〉 + zk) but this

bias term can be integrated in the weight as usual by considering (〈a, wk〉 + zk = 〈(a, 1), (wk, zk)〉, so we
ignore it in the following section. This simply amount to replacing a ∈ Rp by (a, 1) ∈ Rp+1 and adding a
dimension p 7→ p+ 1, as a pre-processing of the features.

Expressiveness. In order to define function of arbitrary complexity when q increases, it is important that
ρ is non-linear. Indeed, if ρ(s) = s, then hW,u(a) = 〈Wa, u〉 = 〈a, W>u〉. It is thus a linear function with
weights W>u, whatever the number q of neurons. Similarly, if ρ is a polynomial on R of degree d, then hW,u(·)
is itself a polynomial of degree d in Rp, which is a linear space V of finite dimension dim(V) = O(pd). So
even if q increases, the dimension dim(V) stays fixed and hW,u(·) cannot approximate an arbitrary function
outside V . In sharp contrast, one can show that if ρ is not polynomial, then hW,u(·) can approximate any
continuous function, as studied in Section 8.3.

8.2 MLP and Gradient Computation

Given pairs of features and data values (ai, yi)
n
i=1, and as usual storing the features in the rows of

A ∈ Rn×p, we consider the following least square regression function (similar computation can be done for
classification losses)

min
x=(W,u)

f(W,u)
def.
=

1

2

n∑
i=1

(hW,u(ai)− yi)2 =
1

2
||ρ(AW>)u− y||2.

Note that here, the parameters being optimized are (W,u) ∈ Rq×p × Rq.

Optimizing with respect to u. This function f is convex with respect to u, since it is a quadratic
function. Its gradient with respect to u can be computed as in (8) and thus

∇uf(W,u) = ρ(AW>)>(ρ(AW>)u− y)

and one can compute in closed form the solution (assuming ker(ρ(AW>)) = {0}) as

u? = [ρ(AW>)>ρ(AW>)]−1ρ(AW>)>y = [ρ(WA>)ρ(AW>)]−1ρ(WA>)y

When W = Idp and ρ(s) = s one recovers the least square formula (9).

27

Optimizing with respect to W . The function f is non-convex with respect to W because the function
ρ is itself non-linear. Training a MLP is thus a delicate process, and one can only hope to obtain a local
minimum of f . It is also important to initialize correctly the neurons (wk)k (for instance as unit norm
random vector, but bias terms might need some adjustment), while u can be usually initialized at 0.

To compute its gradient with respect to W , we first note that for a perturbation ε ∈ Rq×p, one has

ρ(A(W + ε)>) = ρ(AW> +Aε>) = ρ(AW>) + ρ′(AW>)� (Aε>)

where we have denoted “�” the entry-wise multiplication of matrices, i.e. U � V = (Ui,jVi,j)i,j . One thus
has,

f(W + ε, u) =
1

2
||e+ [ρ′(AW>)� (Aε>)]y||2 where e

def.
= ρ(AW>)u− y ∈ Rn

= f(W,u) + 〈e, [ρ′(AW>)� (Aε>)]y〉+ o(||ε||)
= f(W,u) + 〈Aε>, ρ′(AW>)� (eu>)〉
= f(W,u) + 〈ε>, A> × [ρ′(AW>)� (eu>)]〉.

The gradient thus reads
∇W f(W,u) = [ρ′(WA>)� (ue>)]×A ∈ Rq×p.

8.3 Universality

In this section, to ease the exposition, we explicitly introduce the bias and use the variable “x ∈ Rp” in
place of “a ∈ Rp”. We thus write the function computed by the MLP (including explicitly the bias zk) as

hW,z,u(x)
def.
=

q∑
k=1

ukϕwk,zk(x) where ϕw,z(x)
def.
= ρ(〈x, w〉+ z).

The function ϕw,z(x) is a ridge function in the direction orthogonal to w̄
def.
= w/||w|| and passing around the

point − z
||w|| w̄.

In the following we assume that ρ : R→ R is a bounded function such that

ρ(r)
r→−∞−→ 0 and ρ(r)

r→+∞−→ 1. (44)

Note in particular that such a function cannot be a polynomial and that the ReLu function does not satisfy
these hypothesis (universality for the ReLu is more involved to show). The goal is to show the following
theorem.

Theorem 3 (Cybenko, 1989). For any compact set Ω ⊂ Rp, the space spanned by the functions {ϕw,z}w,z is
dense in C(Ω) for the uniform convergence. This means that for any continuous function f and any ε > 0,
there exists q ∈ N and weights (wk, zk, uk)qk=1 such that

∀x ∈ Ω, |f(x)−
q∑

k=1

ukϕwk,zk(x)| 6 ε.

In a typical ML scenario, this implies that one can “overfit” the data, since using a q large enough ensures
that the training error can be made arbitrary small. Of course, there is a bias-variance tradeoff, and q needs
to be cross-validated to account for the finite number n of data, and ensure a good generalization properties.

28

Proof in dimension p = 1. In 1D, the approximation hW,z,u can be thought as an approximation using
smoothed step functions. Indeed, introducing a parameter ε > 0, one has (assuming the function is Lipschitz
to ensure uniform convergence),

ϕw
ε ,

zk
ε

ε→0−→ 1[−z/w,+∞[

This means that
hW

ε ,
z
ε ,u

ε→0−→
∑
k

uk1[−zk/wk,+∞[,

which is a piecewise constant function. Inversely, any piecewise constant function can be written this way.
Indeed, if h assumes the value dk on each interval [tk, tk+1[, then it can be written as

h =
∑
k

dk(1[tk,+∞[− 1[tk,+∞[).

Since the space of piecewise constant functions is dense in continuous function over an interval, this proves
the theorem.

Proof in arbitrary dimension p. We start by proving the following dual characterization of density,
using bounded Borel measure µ ∈M(Ω) i.e. such that µ(Ω) < +∞.

Proposition 11. If ρ is such that for any Borel measure µ ∈M(Ω)(
∀ (w, z),

∫
ρ(〈x, w〉+ z)dµ(x) = 0

)
=⇒ µ = 0, (45)

then Theorem 3 holds.

Proof. We consider the linear space

S def.
=

{
q∑

k=1

ukϕwk,zk ; q ∈ N, wk ∈ Rp, uk ∈ R, zk ∈ R

}
⊂ C(Ω).

Let S̄ be its closure in C(Ω) for || · ||∞, which is a Banach space. If S̄ 6= C(Ω), let us pick g 6= 0, g ∈ C(Ω)\S̄.
We define the linear form L on S̄ ⊕ span(g) as

∀ s ∈ S̄, ∀λ ∈ R, L(s+ λg) = λ

so that L = 0 on S̄. L is a bounded linear form, so that by Hahn-Banach theorem, it can be extended in a
bounded linear form L̄ : C(Ω) → R. Since L ∈ C(Ω)∗ (the dual space of continuous linear form), and that
this dual space is identified with Borel measures, there exists µ ∈ M(Ω), with µ 6= 0, such that for any
continuous function h, L̄(h) =

∫
Ω
h(x)dµ(x). But since L̄ = 0 on S̄,

∫
ρ(〈·, w〉+ z)dµ = 0 for all (w, z) and

thus by hypothesis, µ = 0, which is a contradiction.

The theorem now follows from the following proposition.

Proposition 12. If ρ is continuous and satisfies (44), then it satisfies (45).

Proof. One has

ϕw
ε ,

u
ε +t(x) = ρ

(
〈x, w〉+ u

ε
+ t

)
ε→0−→ γ(x)

def.
=

 1 if Hw,u,
ρ(t) if x ∈ Pw,u,
0 if 〈w, x〉+ u < 0,

where we defined Hw,u
def.
= {x ; 〈w, x〉+ u > 0} and Pw,u

def.
= {x ; 〈w, x〉+ u = 0}. By Lebesgue dominated

convergence (since the involved quantities are bounded uniformly on a compact set)∫
ϕw

ε ,
u
ε +tdµ

ε→0−→
∫
γdµ = ϕ(t)µ(Pw,u) + µ(Hw,u).

29

Thus if µ is such that all these integrals vanish, then

∀ (w, u, t), ϕ(t)µ(Pw,u) + µ(Hw,u) = 0.

By selecting (t, t′) such that ϕ(t) 6= ϕ(t′), one has that

∀ (w, u), µ(Pw,u) = µ(Hw,u) = 0.

We now need to show that µ = 0. For a fixed w ∈ Rp, we consider the function

h ∈ L∞(R), F (h)
def.
=

∫
Ω

h(〈w, x〉)dµ(x).

F : L∞(R)→ R is a bounded linear form since |F (µ)| 6 ||h||∞µ(Ω) and µ(Ω) < +∞. One has

F (1[−u,+∞[=

∫
Ω

1[−u,+∞[(〈w, x〉)dµ(x) = µ(Pw,u) + µ(Hw,u) = 0.

By linearity, F (h) = 0 for all piecewise constant functions, and F is a continuous linear form, so that by
density F (h) = 0 for all functions h ∈ L∞(R). Applying this for h(r) = eir one obtains

µ̂(w)
def.
=

∫
Ω

ei〈x,w〉dµ(x) = 0.

This means that the Fourier transform of µ is zero, so that µ = 0.

Quantitative rates. Note that Theorem 3 is not constructive in the sense that it does not explain how to
compute the weights (wk, uk, zk)k to reach a desired accuracy. Since for a fixed q the function is non-convex,
this is not surprising. Some recent studies show that if q is large enough, a simple gradient descent is able
to reach an arbitrary good accuracy, but it might require a very large q.

Theorem 3 is also not quantitative since it does not tell how much neurons q is needed to reach a desired
accuracy. To obtain quantitative bounds, continuity is not enough, it requires to add smoothness constraints.
For instance, Barron proved that if ∫

||ω|||f̂(ω)|dω 6 Cf

where f̂(ω) =
∫
f(x)e−i〈x, ω〉dx is the Fourier transform of f , then for q ∈ N there exists (wk, uk, zk)k

1

Vol(B(0, r))

∫
||x||6r

|f(x)−
q∑

k=1

ukϕwk,zk(x)|2dx 6
(2rCf)2

q
.

The surprising part of this Theorem is that the 1/q decay is independent of the dimension p. Note however
that the constant involved Cf might depend on p.

9 Automatic Differentiation

The main computational bottleneck of these gradient descent methods (batch or stochastic) is the com-
putation of gradients ∇f(x). We have seen that for simple functionals, such as those encountered in ERM
for linear models, and also for MLP with a single hidden layer (see Section ??), it is possible to compute
these gradients in closed form, and that the main computational burden is the evaluation of matrix-vector
products. For more complicated functionals (such as those involving deep networks), computing the formula
for the gradient quickly becomes cumbersome. Even worse: computing these gradients using the usual chain
rule formula is sub-optimal. This section presents a method to compute recursively in an optimal manner
these gradients. The purpose of this approach is to automatize this computational step.

30

Figure 19: A computational graph.

We consider f : Rp → R and want to derive a method to evaluate ∇f : Rp 7→ Rp. Approximating this
vector field using finite differences, i.e. introducing ε > 0 small enough and computing

1

ε
(f(x+ εδ1)− f(x), . . . , f(x+ εδp)− f(x))> ≈ ∇f(x)

requires p+ 1 evaluations of f . For a large p, this is prohibitive. The method we describe in this section (the
so-called reverse mode automatic differentiation) has in most cases a cost proportional to a single evaluation
of f .

9.1 Computational Graphs

We consider a generic function f(x) where x = (x1, . . . , xs) are the input variables. We assume that
f is implemented in an algorithm, with intermediate variable (xs+1, . . . , xt where t is the total number
of variables. The output is xt, and we thus denote xt = f(x) this function. We denote xk ∈ Rnk the

dimensionality of the variables. The goal is to compute the derivatives ∂f(x)
∂xk

∈ Rnt×nk for k = 1, . . . , s. For
the sake of simplicity, one can assume in what follows that nk = 1 so that all the involved quantities are
scalar (but if this is not the case, beware that the order of multiplication of the matrices of course matters).

A numerical algorithm can be represented as a succession of functions of the form

∀ k = s+ 1, . . . , t, xk = fk(x1, . . . , xk−1)

where fk is a function which only depends on the previous variables, see Fig. 19. One can represent this
algorithm using a directed acyclic graph (DAG), linking the variables involved in fk to xk. The node of this
graph are thus conveniently ordered by their indexing, and the directed edges only link a variable to another
one with a strictly larger index. The evaluation of f(x) thus corresponds to a forward traversal of this graph.

9.2 Forward Mode of Automatic Differentiation

The forward mode correspond to the usual way of computing differentials. It compute the derivative
∂xk

∂x1
of all variables xk with respect to x1. One then needs to repeat this method p times to compute all

the derivative with respect to x1, x2, . . . , xp (we only write thing for the first variable, the method being of
course the same with respect to the other ones).

The method initialize the derivative of the input nodes

∂x1

∂x1
= Idn1×n1 ,

∂x2

∂x1
= 0n2×n1 , . . . ,

∂xs
∂x1

= 0ns×n1 ,

(and thus 1 and 0’s for scalar variables), and then iteratively make use of the
following recursion formula

∀ k = s+1, . . . , t,
∂xk
∂x1

=
∑

`∈father(k)

[
∂xk
∂x`

]
×∂x`
∂x1

=
∑

`∈father(k)

∂fk
∂x`

(x1, . . . , xk−1)×∂x`
∂x1

.

31

Figure 20: Example of a simple computational graph.

Figure 21: Example of a more complex computational graph.

The notation “father(k)” denotes the nodes ` < k of the graph that are
connected to k. Here the quantities being computed (i.e. stored in computer variables) are the derivatives
∂x`

∂x1
, and × denotes in full generality matrix-matrix multiplications. We have put in [. . .] an informal notation,

since here ∂xk

∂x`
should be interpreted not as a numerical variable but needs to be interpreted as derivative of

the function fk, which can be evaluated on the fly (we assume that the derivative of the function involved
are accessible in closed form).

Assuming all the involved functions ∂fk
∂xk

have the same complexity (which is likely to be the case if all

the nk are for instance scalar or have the same dimension), and that the number of father node is bounded,
one sees that the complexity of this scheme is p times the complexity of the evaluation of f (since this needs
to be repeated p times for ∂

∂x1
, . . . , ∂

∂xp
). For a large p, this is prohibitive.

Simple example. We consider the fonction

f(x) = log(x) +
√

log(x) (46)

whose computational graph is displayed on Figure 20. The iterations of the forward mode read

∂x

∂x
= 1

∂y

∂x
=

[
∂y

∂x

]
∂x

∂x
=

1

x

∂x

∂x
{x 7→ y = log(x)}

∂z

∂x
=

[
∂z

∂y

]
∂y

∂x
=

1

2
√
y

∂y

∂x
{y 7→ z =

√
y}

∂f

∂x
=

[
∂f

∂z

]
∂z

∂x
+

[
∂f

∂y

]
∂y

∂x
= 1

∂z

∂x
+ 1

∂y

∂x
{(x, z) 7→ f = x+ z}

More complex example. We now consider the fonction

f(x) =
log(x+

√
x2 + 1)

x2
− log3(x+

√
x2 + 1)√

x2 + 1
(47)

32

whose computational graph is displayed on Figure 21. The iterations of the forward mode read

∂x

∂x
= 1

∂y

∂x
=

[
∂y

∂x

]
∂x

∂x
= 2x

∂x

∂x
{x 7→ y = x2}

∂z

∂x
=

[
∂z

∂y

]
∂y

∂x
=

1

2
√
y + 1

∂y

∂x
{y 7→ z =

√
y + 1}

∂r

∂x
=

[
∂r

∂z

]
∂x

∂x
+

[
∂r

∂z

]
∂z

∂x
=

1

x+ r

∂x

∂x
+

1

x+ r

∂z

∂x
{(x, z) 7→ r = log(x+ z)}

∂s

∂x
=

[
∂s

∂r

]
∂r

∂x
+

[
∂s

∂y

]
∂y

∂x
=

1

y

∂r

∂x
− r

y2

∂y

∂x
{(r, y) 7→ s =

r

y
}

∂t

∂x
=

[
∂t

∂r

]
∂r

∂x
= 3r2 ∂r

∂x
{r 7→ t = r3}

∂u

∂x
=

[
∂u

∂t

]
∂t

∂x
+

[
∂u

∂z

]
∂z

∂x
=

1

z

∂t

∂x
− t

z2

∂z

∂x
{(t, z) 7→ u =

t

z
}

∂f

∂x
=

[
∂f

∂s

]
∂s

∂x
+

[
∂f

∂u

]
∂u

∂x
= 1

∂s

∂x
− 1

∂u

∂x
{(s, u) 7→ f = s− u}

9.3 Reverse Mode of Automatic Differentiation

Instead of evaluating the differentials ∂xk

∂x1
which is problematic for a large p, the reverse mode evaluates

the differentials ∂xt

∂xk
, i.e. it computes the derivative of the output node with respect to the all the inner

nodes.
The method initialize the derivative of the final node

∂xt
∂xt

= Idnt×nt
,

and then iteratively makes use, from the last node to the first, of the following
recursion formula

∀ k = t−1, t−2, . . . , 1,
∂xt
∂xk

=
∑

m∈son(k)

∂xt
∂xm

×
[
∂xm
∂xk

]
=

∑
m∈son(k)

∂xt
∂xm

×∂fm(x1, . . . , xm)

∂xk
.

The notation “father(k)” denotes the nodes ` < k of the graph that are con-
nected to k.

Back-propagation. In the special case where xt ∈ R, then ∂xt

∂xk
= [∇xk

f(x)]> ∈ R1×nk and one can write
the recursion on the gradient vector as follow

∀ k = t− 1, t− 2, . . . , 1, ∇xk
f(x) =

∑
m∈son(k)

(
∂fm(x1, . . . , xm)

∂xk

)>
(∇xm

f(x)) .

where
(
∂fm(x1,...,xm)

∂xk

)>
∈ Rnk×nm is the adjoint of the Jacobian of fm. This form of recursion using adjoint

is often referred to as “back-propagation”, and is the most frequent setting in applications to ML.
In general, when nt = 1, the backward is the optimal way to compute the gradient of a function. Its

drawback is that it necessitate the pre-computation of all the intermediate variables (xk)tk=p, which can be
prohibitive in term of memory usage when t is large. There exists check-pointing method to alleviate this
issue, but it is out of the scope of this course.

33

Simple example. We consider once again the fonction f(x) of (46), the iterations of the reverse mode
read

∂f

∂f
= 1

∂f

∂z
=
∂f

∂f

[
∂f

∂z

]
=
∂f

∂f
1 {z 7→ f = x+ z}

∂f

∂y
=
∂f

∂z

[
∂z

∂y

]
+
∂f

∂f

[
∂f

∂y

]
=
∂f

∂z

1

2
√
y

+
∂f

∂f
1 {y 7→ z =

√
y, y 7→ f = y + z}

∂f

∂x
=
∂f

∂y

[
∂y

∂x

]
=
∂f

∂y

1

x
{x 7→ y = log(x)}

More complex example. We consider once again the fonction f(x) of (47), the iterations of the reverse
mode read

∂f

∂f
= 1

∂f

∂u
=
∂f

∂f

[
∂f

∂u

]
=
∂f

∂f
(−1) {u 7→ f = s− u}

∂f

∂t
=
∂f

∂u

[
∂u

∂t

]
=
∂f

∂u

1

z
{t 7→ u =

√
y, y

t

z
}

∂f

∂s
=
∂f

∂f

[
∂f

∂s

]
=
∂f

∂f
1 {s 7→ f = s− u}

∂f

∂r
=
∂f

∂t

[
∂t

∂r

]
+
∂f

∂s

[
∂s

∂r

]
=
∂f

∂t
3r2 +

∂f

∂s

1

y
{r 7→ s =

r

y
, r 7→ t = r3}

∂f

∂z
=
∂f

∂u

[
∂u

∂z

]
+
∂f

∂r

[
∂r

∂z

]
=
∂f

∂u

−t
z2

+
∂f

∂r

[
∂1

∂x+ z

]
{z 7→ u =

t

z
, z 7→ r = log(x+ z)}

∂f

∂y
=
∂f

∂z

[
∂z

∂y

]
+
∂f

∂s

[
∂s

∂y

]
=
∂f

∂z

1

2
√
y + 1

+
∂f

∂s

−r
y2

{y 7→ z =
√
y + 1, y 7→ s =

r

y
}

∂f

∂x
=
∂f

∂y

[
∂y

∂x

]
+
∂f

∂r

[
∂r

∂x

]
=
∂f

∂y
2x+

∂f

∂r

1

x+ z
{x 7→ y = x2, x 7→ r = log(x+ z)}

9.4 Feed-forward Architectures

The simplest computational graphs are purely feedforward, and corresponds to the computation of

f = ft−1 ◦ ft−2 ◦ . . . ◦ f2 ◦ f1 (48)

for functions fk : Rnk → Rnk+1 .
The forward function evaluation algorithm initializes x0 = x and then computes

∀ k = 1, . . . , t− 1, xk+1 = fk(xk)

where at the output, one retrieves f(x) = xt.

Denoting Ak
def.
= ∂fk(xk) ∈ Rnk+1×nk the Jacobian, one has

∂f(x) = At−1 ×At−2 × . . . A2 ×A1.

The forward (resp. backward) mode corresponds to the computation of the product of the Jacobian from
right to left (resp. left to right)

∂f(x) = At−1 × (At−2 × (. . .× (A3 × (A2 ×A1)))) ,

∂f(x) = ((((At−1 ×At−2)×At−3)× . . .)×A2)×A1.

34

Figure 22: Complexity of forward (left) and backward (right) modes for feedforward graphs.

We note that the computation of the product A × B of A ∈ Rn×p with B ∈ Rp×q necessitates npq
operations. As shown on Figure 22, the complexity of the forward and backward modes are

n1

t−1∑
k=2

nknk+1 and nt

t−2∑
k=1

nknk+1

So if nt � n1 (which is the typical case in ML scenario where nt = 1) then the backward mode is cheaper.

9.5 Multilayer Perceptron

We consider a feedforward deep network (fully connected for simplicity), initialized as a0 = a and defined
through

∀ k = 1, . . . , t,

{
bk

def.
= Wkak−1

ak
def.
= ρ(bk)

(49)

where ρ is a point wise non-linearity (so ρ(u) actually denoted (ρ(ui))i), Wk ∈ Rnk×nk−1 are the weight to
be trained, and the final output is set as, for W = (W1, . . . ,Wt),

f(W)
def.
= `(bt, y)

where ` : R× R→ 0 is some loss function. Figure 23 displays the computational graph.
The backward automatic differentiation method (aka back-propagation) proceeds by first computing the

(ak)tk=1 by forward evaluation, and then intializing the gradient vector

∇btf = `′(bt, y)

where `′ is the derivative with respect to the first variable, and then applying the adjoint on the chain rule
of ak−1 7→ bk = Wkak−1 7→ ak = ρ(bk)

∇bkf = diag(ρ′(bk))∇akf
∇ak−1

f = W>k bk

The gradient of with respect to the weight matrices are obtained by also applying the adjoint on the chain
rule, but this time to of Wk 7→ bk = Wkak−1

∇Wk
f = (∇bkf)a>k−1.

35

Figure 23: Computational graph for a MLP.

36

	Motivation in Machine Learning
	Unconstraint optimization
	Regression
	Classification

	Basics of Convex Analysis
	Existence of Solutions
	Convexity
	Convex Sets

	Derivative and gradient
	Gradient
	First Order Conditions
	Least Squares
	Link with PCA
	Classification
	Chain Rule

	Gradient Descent Algorithm
	Steepest Descent Direction
	Gradient Descent

	Convergence Analysis
	Quadratic Case
	General Case

	Regularization
	Penalized Least Squares
	Ridge Regression
	Lasso
	Iterative Soft Thresholding

	Stochastic Optimization
	Minimizing Sums and Expectation
	Batch Gradient Descent (BGD)
	Stochastic Gradient Descent (SGD)
	Stochastic Gradient Descent with Averaging (SGA)
	Stochastic Averaged Gradient Descent (SAG)

	Multi-Layers Perceptron
	MLP and its derivative
	MLP and Gradient Computation
	Universality

	Automatic Differentiation
	Computational Graphs
	Forward Mode of Automatic Differentiation
	Reverse Mode of Automatic Differentiation
	Feed-forward Architectures
	Multilayer Perceptron

