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Paradigm

1.  Paradigm:  Support vector machine as a continous
algorithm

Fundamental objects:  Basic arithmetic operations and evaluation
operations, e.g., function evaluation.

How complex is it from a continuous complexity theory viewpoint?



Continuous Complexity Model

2.  The complexity theoretic model:

Given:  Unknown probability measure  on in space  of3 ‘Ð ß CÑ Jx ."

probability distributions on ‘."Þ

Goal:  find the best functional relationship  reflected inC œ 0Ð Ñx
3Ð ß CÑ − J Þx

Solution mapping-   allowed class of functions ;W À J Ä K œ 0
defined by

WÐ Ñ œ 0Þ3

We are given (Monte Carlo) partial information about :3

R œ Ö œ Ð ß C Ñ×3 z x3 3 3 3œ"
8 , 

where  chosen according to .z3
."− ‘ 3



Continuous Complexity Model

Goal:  estimate the best function .0 œ W − K3

Error criterion for estimate : 0 œ ÐRÐ ÑÑs 9 3  start with risk
function  measuring distance between guess Z Ð0Ð Ñß CÑ 0Ð Ñx x
and value   Then computeCÞ

MÐ0Ñ œ I ÐZ Ð0Ð Ñ  CÑÑ œ Z 0Ð Ñ  C . Ð ß CÑÞs s
3

‘

x x x( Š ‹
."

3

Examples:

Z Ð0Ð Ñ  CÑ œs
l0Ð Ñ  Cls

l0Ð Ñ  Cls

Ð"  0Ð ÑCÑ C œ „ "s

x
x
x

x

ÚÝÛÝÜ
#

 (categorical data ) 

(note B œ ÐBß !ÑÑÞ max



Continuous Complexity Model

Error of approximation distance from lowest risk:œ

/Ð0Ñ œ lMÐ0Ñ  MÐ0 Ñl œ MÐ0Ñ  MÐ0 Ñs s s
! ! (1)

where

0 ´ MÐ0Ñß!
0−K

arg min

Goal:  Find optimal algorithms for given information .R3

Note: error measure (1) (at least for finite dimensional
hypothesis space ) equivalent to standard norm error.K

Indeed assume  is twice differentiable function of .MÐ0Ñ 0 − K

Since minimum, Hessian matrix  (pos. indef.).0 œ LÐ0 Ñ   !! !



Continuous Complexity Model

If in addition  positive definite, then for any norm  on ,L m † m K
b - ß - constants  s.t." #

- m0  0 m Ÿ MÐ0Ñ  MÐ0 Ñ Ÿ - m0  0 m Þ" ! K ! # ! K

So error  a norm.µ

Given information

R œ œs3 3 $"
3œ"

8

z3
 

and an algorithm  for approximating best  from9 3ÐRÐ ÑÑ œ 0 0s

about , define error of algorithm by:3

/Ð ß Ñ œ I V 0  VÐ0 Ñ ßs9 3 3Š ‹’ “ !

where 0 œs 9ÐR ÑÐ Ñ œ 03 best guess for .



SVM Algorithm

3. Standard support vector machine algorithm:

Given data

Z z z x x xœ Ð á Ñ œ ß C à ß C àá à ß C
"
, , 8 " " # # 8 8a b

define empirical prob. dist.  estimating  as:3 3s

3 $s œ Ð Ñß"
3œ"

8

z3
z  

( point mass at  i.e., "best" guess of ; here $ 3z3
œ Ñ œ Ð ß CÑÞz z x3



SVM Algorithm

Given cardinality of information , use best guess  to8 s3
estimate minimizer of :MÐ0Ñ

0 œ M Ð0Ñ œ Z Ð0Ð Ñ  C ÑÞ
"

8
8 3 3

0−K 0−K
s

3œ"

8

arg min arg min3 " x

Denote M Ð0Ñ œ3s empirical risk.

Thus goal is to estimate a minimizer over  of empirical riskK
M Ð0Ñ œ RÐ Ð ÑÑÞs3  based on information 3 9 3

For support vector machine (SVM):   (classificationC œ „ "
of , and restrict  to be affine (for linear partition ofxÑ 0 − K
classes in space):

K œ Ö0Ð Ñ œ †  , À − ß , − ×Þx w x w ‘ ‘.  



Algorithmic Error

4.  Algorithmic error

Complexity-theoretic bounds on SVM algorithms:  what is
error as information cardinality ?8 Ä _

SLT bound:  intuitively define

VC dimension of Z Ð0Ð Ñß CÑx

œ 0 − Ñcapacity of this set of functions (as  variesZ



Algorithmic Error

Def. 1:  Indexed family of functions  on space K œ Ö1 × V" "−F

separates a finite set  if  , ,\ œ ÖB × § V a ] § \ b − F3 3œ"
8 "

! ‘−  s.t.

1 ÐCÑ   ! B − ]" !  iff ;

that is, all finite subsets  can be separated out by some]
1 − KÞ



Algorithmic Error

Def. 1:    of family  of functions on VC dimension 2 K V

œ \ Kcardinality of the largest set of points  separated by .
Need error estimates independent of distribution 3Ð Ñz − JÞ

Let  and:  #

7 œ ß
mZ Ð0Ð Ñß CÑÑm

mZ Ð0Ð Ñß CÑm
sup
0−K

:

"

x
x

and

+Ð:Ñ œ Þ
" :  "

# :  #"Î: Œ 
:"
:



Algorithmic Error

Finally, define

X ´ %
2Ð  "Ñ  Ð Ñ

8

ln ln#8
2 %

(

ß

where  is the VC dimension of the set of functions2
ÖZ Ð0Ð Ñß CÑ× Þx 0−K

Then
Theorem (Vapnik):  For any distribution  on , and any3 ‘."

loss function , we have with probability at least ,Z "  $

error  %
7

7
´ VÐ0 Ñ  VÐ0Ñ Ÿ  S Þ

N +Ð:Ñ "

"  +Ð:Ñ 8 8
8

0−
inf

ln[

È
Š ‹È Œ X

X

where N œ VÐ0ÑÞinf
0−[



Algorithmic Error

Recall  may be replaced by a norm error if  finite dimensional.% K

Remark:  Note that for  large we have8

% Ÿ O œ O %
2Ð  "Ñ  Ð Ñ

8
È ËX

ln ln#8
2 %

(

Like Monte Carlo with extra  term in numerator;ln #8
2

Uniform Monte Carlo result - to find the overall minimizer  of 0 VÐ0Ñ!

within  we need to estimate  uniformly in , within  - hence% %VÐ0Ñ 0
the ln term.  Note also result is uniform in distribution .3



Algorithmic Error

%-complexity:  Now derive information complexity of risk
minimization.  We see that the above uniform bounds give
an inverse relationship as follows.

Define the -probabilistic -complexity  of identifying the$ % 8
risk-minimizing function by:

8 œ Ð Ñcomp %

œ ÖlVÐ0 Ñ  VÐ0 Ñl  "  ×inf
8

8
w

w 0 % $ with probability at least 



Algorithmic Error

Now invert above relationship between  and :% 8

%
7 X

7 X
Ÿ S

N + "

Ð"  + Ñ 8

a bÈÈ Œ 
yielding complexity

8Ð Ñ Ÿ # N + 2  9 Þ
"Î "Î

% 7
% %

% %
a b a b Œ #

#

# #

ln ln

œ 0 œ M Ð0Ñinformation complexity of approximating  within!
0

arg inf 3

error , using algorithm%

9 3ÐRÐ ÑÑ œ M Ð0Ñarg inf
0−K

s3

which minimizes empirical risk function.  Note that probability  of$
failure of approximation appears in higher order terms.



Algorithmic Error

5.  Support vector machine:  In this case we assume

K œ Ö 0Ð Ñ œ †  ,×affine functions x w x

We assume  (classification).C œ Ö „ "×

Want  which minimizes the loss with0 − K

Z Ð0Ð Ð"  0Ðx xÑß CÑ œ ÑCÑ, i.e.,

VÐ0Ñ œ Ð"  0Ð(
‘."

x xÑCÑ . Ð ß CÑ 3 .

The affine function  which minimizes the empirical risk0

"
8
3œ"

8!Z Ð0Ðx3 3ß C ÑÑ forms a plane which separates the data well.



Is SVM Optimal?

6.  Is the SVM algorithm optimal? 

Note:  we have for SVM error,

% œ S
8

8 Ê ln 
;

and complexity

8Ð Ñ œ S
"Î

%
%

%
Œ ln

(with prob. 1  ÑÞ$

Note that the best possible case is for a function class  with onlyK
one non-trivial function .  In this case (standard Monte Carlo0
without uniformity in )  we have (again with probability 0 "  Ñ À$



Is SVM Optimal?

% H % H %œ à 8Ð Ñ œ Ð Ñ
"

8 È #

Thus we conclude:

Theorem 1:  The SVM is within a logarithm  term of beinglnÐ"Î Ñ%
optimal, i.e., of having optimal -complexity with probability .% $" 

Can we improve on the logarithm term?   Yes, at least in some
cases.



Improving VC Bounds

7.  Improvement of VC bounds
We can improve the bounds if we restrict ourselves to
"almost" all of {affine functions }.K œ 0

Specifically, let us consider the space  consisting of allKQ

affine functions with slopes less than or equal tow x w  †  , l l
Q K § KÑÞ (or any other compact subset Q

On  the functionalKQ

FÐ0Ñ œ V Ð0Ñ œ Z Ð0Ð3
‘

(
."

x xÑß CÑ . Ð ß CÑ3

is continuous in .0 − KQ



Improving VC Bounds

Note for any fixed , from 0 − KQ Monte Carlo:

lV Ð0Ñ  V Ð0Ñl œ Z Ð0Ð Z Ð0Ð
"

8
3 3s

3œ"

8º " (x x x3 3Ñß C Ñ  Ñß CÑ. Ð ß CÑ3 º

œ S Þ
"

8 È
Now note if Z Ð0Ðx x3 3ß C ÑÑ œ TÐ0Ð Ñ  CÑ where
T œ polynomial, then

V Ð0Ñ œ TÐ †  ,  CÑ. Ð ß CÑ3 ( w x x3

œ - + ÐB ßá ß B ß CÑ. Ð ß CÑ( "
3

3 3 " 8 3 x



Improving VC Bounds

where  are monomials in .  Now note that since+ B ßá ß B ß C3 " 8

for each :+3

lV Ð+ Ñ  V Ð+ Ñl œ S ß
"

8
3 3s 3 3  È

the same follows for their finite sum TÐw x†  ,  CÑ,
uniformly in bounded w.



Improving VC Bounds

Thus as above with probability :"  $

Theorem 2:  For any set  of affine functions ofK § KQ

bounded slope, and a polynomial , we haveZ

VÐ0 Ñ  VÐ0Ñ œ Þ
"

8
8

0−
inf
Y

O È
Thus, information complexity of -approximation is of order%
%# for SVM, i.e., is almost optimal.

Further, the algorithm of empirical risk-minimization is
complexity-almost optimal.

Thus log term in asymptotic error, if there, comes from
specific small set of possible  for  as above.0 − K ZQ



Improving VC Bounds

We note that for a compactly supported , we can3
approximate any  uniformly by polynomials, so thatZ

Theorem 3:  For a complactly supported  and any3
continuous , there exists a  which is arbitrarily close to Z Z Z‡

such that the probability information complexity of an"  $
SVM using error criterion is of order Z Þ‡ "

8È



Scaled Algorithm Families

8.  Use of scaled families of algorithms

Increased information generically corresponds to increased
algorithmic complexity -

This occurs, for example in spline approximation - more data points
means approximation in spline space with more knots.

A science of scaling the two is sometimes useful.

Example:  If I have have a million data points then I don't want to 
try linear regression (i.e., an approximation space  only consistingK
of linear functions).  I want to enlarge the space to include more
parameters, e.g., quadratics and cubics.

One popular computational model is now to scale algorithms  with9
cardinality of information via size  of range in .2 K



Scaled Algorithm Families

Specifically, for information  of cardinality , chooseR À J Ä ] 8
algorithm :  whose range  has dimension , with98 8] Ä K K 2Ð8Ñ
scaling  chosen so that the error of approximation is minimized.2Ð8Ñ

The error for such an algorithm

% œ VÐ0 Ñ  VÐ0 Ñ œ ÐVÐ0 Ñ  VÐ0 ÑÑ  VÐ0 Ñ  VÐ0 Ñ ßs
8 ! 5 5 !8ðóóóóóóñóóóóóóò ðóóóóóóñóóóóóóòa b

estimation error approximation error% %est appÐ8Ñ Ð2Ñ

where

0 œ 8s
8 minimizer of empirical risk with  data points

0 œ K 08 8 !closest element of  to true 

Note:  %est(  decreases at some rate as 8Ñ 8 Ä _
  ( decreases at some rate as .%app 2Ñ 8 Ä _



Scaled Algorithm Families

But:  if  too large for , have overfitting - estimation error  - we2 8 Ä !
are in the wrong space.

Goal:  increase  so not enough dimensions  in  for2 œ 2Ð8Ñ 2Ð8Ñ K8

%est œ Þzero

This is scaling of complexity of  with information2 œ 2Ð8Ñ 9
complexity .8

Colloquially:  keep the number of free parameters alg  comp )Ð2 œ Þ Þ
scaled to amount of data infomration complexityÐ8 œ Ñ

(Note: in e.g. Kon and Plaskota, 2000:  algorithmic
complexity neural complexity).œ



Nonlinear SVM

9. Scaling of algorithms:  applications to SVM

More on scaling  and :  8 2 Recall

% Ÿ O œ O %
2Ð  "Ñ  Ð Ñ

8
È ËX

ln ln#8
2 %

(

This suggests: scale  with  so  is constant or8 2 2Î8
decreasing

Note  must increase (not just ) for approximation error2 8
/ Ð5Ñ !ÞÑapp Ò

5Ä_

Thus want ran , with VC0 œ ÐR Ð ÑÑ − K œ Ð Ñ 2 œs
8 8 8 8 89 3 9

dim  scaled as follows.ÐK Ñ8

Let polynomials of degree  on .T œ 55
.‘



Nonlinear SVM

Usual SVM algorithm:

9" "À Ö T Þ data polynomials   z3× Ä affine 

Target space  (along with  and composed with ) has VCT C Z"

dimension  .Ÿ .  #

For :  Extend  to  of appropriatenonlinear SVM T T" 5

dimension

done by extending data vector

x œ ÐB ßá ß B Ñ Ä" 8

x̃ all possible monomials of degree  in components œ Ð 5 B Ñ3

Then use standard SVM algorithm on x̃.



Nonlinear SVM

Let dim T œ HÐ5ÑÞ5

Therefore, scale  so5 À

algorithmic complexity dim. dim œ Z G œ 2 Ÿ T  #5

scales with information complexity 8

For this scaled family of algorithms
Theorem 4:   For the above scaled family of SVM algorithms,
we have that the -probabilistic error satisfies$

% %
7 X

7 X
8 Ÿ S S  ß

+Ð:Ñ "

"  +Ð:Ñ 8 È
È Œ  app(h)

where with X !œ #  % ß œ Þln lnÐ "Ñ Ð Î%Ñ
8 2

#8!
!

$



Nonlinear SVM

Note in some cases dimensional reduction appropriate to
prune the set Ran , so nonlinear SVM (ofK œ8 89
appropriate dimensionality) on such reduced data sets can
be attempted.

Example:  (bioinformatic data)

Advantage of NLSVM (i.e., polynomial separators) reduces
in typical (Gaussian) situation to question:

given two multivariate Gaussian distributions 3 . D" " "´ RÐ ß Ñ
(those  and  (those withx for which )C œ " 3 . D# # #´ RÐ ß Ñ
œ "Ñ, what is shape of optimal separator between the two?



Nonlinear SVM

Optimal separator function œ 0ÐxÑ s.t. the probability of error

VÐ0Ñ œ T Ð0Ð Ñ  !Ñ  T Ð0Ð Ñ  !Ñ" #x x

is minimized.

Or: weighting of false positives versus false negatives, where
the new risk function is

V Ð0Ñ œ T Ð0  !Ñ  T Ð0  !Ñß" " " # #! !

with ! !" # œ "Þ

To extent risk for linear SVM large, decision to use a NL
SVM makes sense.



Nonlinear SVM

Note:  to identify optimal  among 0 all functions, observe that
the surface  is optimal.  This is determined by3 3" #Ð Ñ œ Ð Ñx x
the identity

   Ø  ß  Ù
"

#
ln ln! D . D ." " " ""

det x x1a b
œ    Ø  ß  Ùß

"

#
ln ln det! D . D .# # # ##

  x x1a b
Note in this case surface is quadratic, and use of quadratic
ÐT Ñ#  SVM is appropriate.

In fact we expect generically, in cases where distributions of
positive and negative classes have different covariances,
may be significant improvement using quadratic SVM over a
linear one.



Nonlinear SVM

This suggests a criterion for determining whether a quadratic
SVM is appropriate for a given data set  if we determineÀ

empirical covariance matrices  and  for the two dataD Ds s
" #

sets (assuming they are sufficiently large to allow for
accurate estimates), then if  large, we expect aD Ds s" #

quadratic discrimination surface.



Example

10.  Example:  bioinformatic data
Wisconsin cancer database,

1.  Standard SVM applied to the 9 input variables to predict
cancer malignancy  ( 1)„

Data summarized below.

349 randomly chosen examples from 699 total,

349 randomly chosen elements of test set.

The first test via SVM had an error rate of 13.75% on the test
set.

When the three most useful variables were extracted, they
themselves had an SVM error rate of 32.39%.



Example

When the fully nonlinear SVM of degree 2 was applied to
these three variables, the total error rate went down to
8.60%.

Machine \ Error rate FP FN TP TN ERR %ERR

9-variable SVM 37 11 107 194 48 .1375

3-variable SVM 41 72 44 192 113 .3239

3-variable NL SVM 29 1 117 202 30 .0860

F/TP-false/true positive; F/TN-false/true negative; ERR-total
errors;



Example

Currently applying the same methodologies to identifying
transcription initiation sites in the genome from genetic
behaviors.


