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CHAPTER

28 Question Answering

The quest for knowledge is deeply human, and so it is not surprising that practi-
cally as soon as there were computers, and certainly as soon as there was natu-
ral language processing, we were trying to use computers to answer textual ques-
tions. By the early 1960s, there were systems implementing the two major modern
paradigms of question answering—IR-based question answering and knowledge-
based question answering to answer questions about baseball statistics or scientific
facts. Even imaginary computers got into the act. Deep Thought, the computer that
Douglas Adams invented in The Hitchhiker’s Guide to the Galaxy, managed to an-
swer “the Great Question Of Life The Universe and Everything” (the answer was
42, but unfortunately the details of the question were never revealed).

More recently, IBM’s Watson question-answering system won the TV game-
show Jeopardy! in 2011, beating humans at the task of answering questions like

WILLIAM WILKINSON’S “AN ACCOUNT OF THE PRINCIPAL-
ITIES OF WALLACHIA AND MOLDOVIA” INSPIRED THIS AU-
THOR’S MOST FAMOUS NOVEL1

Although the goal of quiz shows is entertainment, the technology used to answer
these questions both draws on and extends the state of the art in practical question
answering, as we will see.

Most current question answering systems focus on factoid questions. Factoid
questions are questions that can be answered with simple facts expressed in short
text answers. The following factoid questions, for example, can be answered with a
short string expressing a personal name, temporal expression, or location:

(28.1) Who founded Virgin Airlines?
(28.2) What is the average age of the onset of autism?
(28.3) Where is Apple Computer based?

In this chapter we describe the two major modern paradigms to question answer-
ing, focusing on their application to factoid questions.

The first paradigm is called IR-based question answering or sometimes text-
based question answering, and relies on the enormous amounts of information
available as text on the Web or in specialized collections such as PubMed. Given a
user question, information retrieval techniques extract passages directly from these
documents, guided by the text of the question.

The method processes the question to determine the likely answer type (often
a named entity like a person, location, or time), and formulates queries to send to
a search engine. The search engine returns ranked documents which are broken up
into suitable passages and reranked. Finally candidate answer strings are extracted
from the passages and ranked.

1 The answer, of course, is Bram Stoker, and the novel was the fantastically Gothic Dracula.
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In the second paradigm, knowledge-based question answering, we instead
build a semantic representation of the query. The meaning of a query can be a
full predicate calculus statement. So the question What states border Texas?—taken
from the GeoQuery database of questions on U.S. Geography (Zelle and Mooney,
1996)— might have the representation:

λx.state(x)∧borders(x, texas)
Alternatively the meaning of a question could be a single relation between a known
and an unknown entity. Thus the representation of the question When was Ada
Lovelace born? could be birth-year (Ada Lovelace, ?x).

Whatever meaning representation we choose, we’ll be using it to query databases
of facts. These might be complex databases, perhaps of scientific facts or geospatial
information, that need powerful logical or SQL queries, Or these might be databases
of simple relations, triple stores like Freebase or DBpedia introduced in Chapter 18.triple stores

Large practical systems like the DeepQA system in IBM’s Watson generally are
hybrid systems, using both text datasets and structured knowledge bases to answer
questions. DeepQA extracts a wide variety of meanings from the question (parses,
relations, named entities, ontological information), and then finds large numbers of
candidate answers in both knowledge bases and in textual sources like Wikipedia or
newspapers. Each candidate answer is then scored using a wide variety of knowl-
edge sources, such as geospatial databases, temporal reasoning, taxonomical classi-
fication, and various textual sources.

We’ll explore all three of these approaches: IR-based, knowledge-based, and the
Watson DeepQA system, in the next three sections.

28.1 IR-based Factoid Question Answering

The goal of IR-based question answering is to answer a user’s question by finding
short text segments on the Web or some other collection of documents. Figure 28.1
shows some sample factoid questions and their answers.

Question Answer
Where is the Louvre Museum located? in Paris, France
What’s the abbreviation for limited partnership? L.P.
What are the names of Odin’s ravens? Huginn and Muninn
What currency is used in China? the yuan
What kind of nuts are used in marzipan? almonds
What instrument does Max Roach play? drums
What’s the official language of Algeria? Arabic
How many pounds are there in a stone? 14

Figure 28.1 Some sample factoid questions and their answers.

Figure 28.2 shows the three phases of an IR-based factoid question-answering
system: question processing, passage retrieval and ranking, and answer processing.

28.1.1 Question Processing
The goal of the question-processing phase is to extract a number of pieces of infor-
mation from the question. The answer type specifies the kind of entity the answer
consists of (person, location, time, etc.). The query specifies the keywords that
should be used for the IR system to use in searching for documents. Some systems
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Figure 28.2 IR-based factoid question answering has three stages: question processing, passage retrieval, and
answer processing.

also extract a focus, which is string of words in the question that are likely to be
replaced by the answer in any answer string found. Some systems also classify the
question type: is this a definition question, a math question, a list question? For
example, for the following question:

Which US state capitol has the largest population?

The query processing should produce results like the following:

Answer Type: city
Query: US state capitol, largest, population
Focus: state capitol

In the next two sections we summarize the two most commonly used tasks, an-
swer type detection and query formulation.

28.1.2 Answer Type Detection (Question Classification)
The task of question classification or answer type recognition is to determine thequestion

classification
answer type, the named-entity or similar class categorizing the answer. A questionanswer type

like “Who founded Virgin Airlines” expects an answer of type PERSON. A question
like “What Canadian city has the largest population?” expects an answer of type
CITY. If we know the answer type for a question, we can avoid looking at every
sentence or noun phrase in the entire suite of documents for the answer, instead
focusing on, for example, just people or cities.

As some of the above examples suggest, we might draw the set of possible an-
swer types for a question classifier from a set of named entities like PERSON, LO-
CATION, and ORGANIZATION described in Chapter 18. Usually, however, a richer,
often hierarchical set of answer types is used, an answer type taxonomy. Such tax-answer type

taxonomy
onomies can be built semi-automatically and dynamically, for example, from Word-
Net (Harabagiu et al. 2000,Pasca 2003), or they can be designed by hand.

Figure 28.4 shows one such hand-built ontology, the Li and Roth (2005) tagset;
a subset is shown graphically in Fig. 28.3. In this hierarchical tagset, each ques-
tion can be labeled with a coarse-grained tag like HUMAN or a fine-grained tag like
HUMAN:DESCRIPTION, HUMAN:GROUP, HUMAN:IND, and so on. Similar tags are
used in other systems; the HUMAN:DESCRIPTION type is often called a BIOGRAPHY
question because the answer is required to give a brief biography of the person rather
than just a name.

Question classifiers can be built by hand-writing rules, by supervised machine
learning, or with some combination. The Webclopedia QA Typology, for example,
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Figure 28.3 A subset of the Li and Roth (2005) answer types.

contains 276 hand-written rules associated with the approximately 180 answer types
in the typology (Hovy et al., 2002). A regular expression rule for detecting an answer
type like BIOGRAPHY (which assumes the question has been named-entity-tagged)
might be

(28.4) who {is | was | are | were} PERSON

Most modern question classifiers, however, are based on supervised machine
learning, and are trained on databases of questions that have been hand-labeled with
an answer type (Li and Roth, 2002). Typical features used for classification include
the words in the questions, the part-of-speech of each word, and named entities in
the questions.

Often, a single word in the question gives extra information about the answer
type, and its identity is used as a feature. This word is sometimes called the an-
swer type word or question headword, and may be defined as the headword of
the first NP after the question’s wh-word; headwords are indicated in boldface in the
following examples:

(28.5) Which city in China has the largest number of foreign financial companies?
(28.6) What is the state flower of California?

Finally, it often helps to use semantic information about the words in the ques-
tions. The WordNet synset ID of the word can be used as a feature, as can the IDs
of the hypernym and hyponyms of each word in the question.

In general, question classification accuracies are relatively high on easy ques-
tion types like PERSON, LOCATION, and TIME questions; detecting REASON and
DESCRIPTION questions can be much harder.

28.1.3 Query Formulation
Query formulation is the task of creating from the question a list of keywords
that form a query that can be sent to an information retrieval system. Exactly what
query to form depends on the application. If question answering is applied to the
Web, we might simply create a keyword from every word in the question, letting
the Web search engine automatically remove any stopwords. Often, we leave out
the question word (where, when, etc.). Alternatively, keywords can be formed from
only the terms found in the noun phrases in the question, applying stopword lists to
ignore function words and high-frequency, low-content verbs.
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Tag Example
ABBREVIATION

abb What’s the abbreviation for limited partnership?
exp What does the “c” stand for in the equation E=mc2?

DESCRIPTION
definition What are tannins?
description What are the words to the Canadian National anthem?
manner How can you get rust stains out of clothing?
reason What caused the Titanic to sink ?

ENTITY
animal What are the names of Odin’s ravens?
body What part of your body contains the corpus callosum?
color What colors make up a rainbow ?
creative In what book can I find the story of Aladdin?
currency What currency is used in China?
disease/medicine What does Salk vaccine prevent?
event What war involved the battle of Chapultepec?
food What kind of nuts are used in marzipan?
instrument What instrument does Max Roach play?
lang What’s the official language of Algeria?
letter What letter appears on the cold-water tap in Spain?
other What is the name of King Arthur’s sword?
plant What are some fragrant white climbing roses?
product What is the fastest computer?
religion What religion has the most members?
sport What was the name of the ball game played by the Mayans?
substance What fuel do airplanes use?
symbol What is the chemical symbol for nitrogen?
technique What is the best way to remove wallpaper?
term How do you say “ Grandma ” in Irish?
vehicle What was the name of Captain Bligh’s ship?
word What’s the singular of dice?

HUMAN
description Who was Confucius?
group What are the major companies that are part of Dow Jones?
ind Who was the first Russian astronaut to do a spacewalk?
title What was Queen Victoria’s title regarding India?

LOCATION
city What’s the oldest capital city in the Americas?
country What country borders the most others?
mountain What is the highest peak in Africa?
other What river runs through Liverpool?
state What states do not have state income tax?

NUMERIC
code What is the telephone number for the University of Colorado?
count About how many soldiers died in World War II?
date What is the date of Boxing Day?
distance How long was Mao’s 1930s Long March?
money How much did a McDonald’s hamburger cost in 1963?
order Where does Shanghai rank among world cities in population?
other What is the population of Mexico?
period What was the average life expectancy during the Stone Age?
percent What fraction of a beaver’s life is spent swimming?
speed What is the speed of the Mississippi River?
temp How fast must a spacecraft travel to escape Earth’s gravity?
size What is the size of Argentina?
weight How many pounds are there in a stone?

Figure 28.4 Question typology from Li and Roth (2002), (2005). Example sentences are
from their corpus of 5500 labeled questions. A question can be labeled either with a coarse-
grained tag like HUMAN or NUMERIC or with a fine-grained tag like HUMAN:DESCRIPTION,
HUMAN:GROUP, HUMAN:IND, and so on.
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When question answering is applied to smaller sets of documents, for example,
to answer questions about corporate information pages, we still use an IR engine
to search our documents for us. But for this smaller set of documents, we generally
need to apply query expansion. On the Web the answer to a question might appear in
many different forms, so if we search with words from the question we’ll probably
find an answer written in the same form. In smaller sets of corporate pages, by con-
trast, an answer might appear only once, and the exact wording might look nothing
like the question. Thus, query expansion methods can add query terms in hopes of
matching the particular form of the answer as it appears. These might include all
morphological variants of the content words in the question, or synonyms from a
thesaurus.

A query formulation approach that is sometimes used for questioning the Web is
to apply query reformulation rules to the query. The rules rephrase the question toquery

reformulation
make it look like a substring of possible declarative answers. The question “when
was the laser invented?” might be reformulated as “the laser was invented”; the
question “where is the Valley of the Kings?” as “the Valley of the Kings is located
in”. Here are some sample hand-written reformulation rules from Lin (2007):

(28.7) wh-word did A verb B→ . . . A verb+ed B
(28.8) Where is A→ A is located in

28.1.4 Passage Retrieval
The query that was created in the question-processing phase is next used to query
an information-retrieval system, either a general IR engine over a proprietary set of
indexed documents or a Web search engine. The result of this document retrieval
stage is a set of documents.

Although the set of documents is generally ranked by relevance, the top-ranked
document is probably not the answer to the question. This is because documents
are not an appropriate unit to rank with respect to the goals of a question-answering
system. A highly relevant and large document that does not prominently answer a
question is not an ideal candidate for further processing.

Therefore, the next stage is to extract a set of potential answer passages from
the retrieved set of documents. The definition of a passage is necessarily system
dependent, but the typical units include sections, paragraphs, and sentences. We
might run a paragraph segmentation algorithm on all the returned documents and
treat each paragraph as a segment.

We next perform passage retrieval. In this stage, we first filter out passages inpassage
retrieval

the returned documents that don’t contain potential answers and then rank the rest
according to how likely they are to contain an answer to the question. The first step
in this process is to run a named entity or answer type classification on the retrieved
passages. The answer type that we determined from the question tells us the possible
answer types we expect to see in the answer. We can therefore filter out documents
that don’t contain any entities of the right type.

The remaining passages are then ranked, usually by supervised machine learn-
ing, relying on a small set of features that can be easily extracted from a potentially
large number of answer passages, such as:

• The number of named entities of the right type in the passage
• The number of question keywords in the passage
• The longest exact sequence of question keywords that occurs in the passage
• The rank of the document from which the passage was extracted
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• The proximity of the keywords from the original query to each other
For each passage identify the shortest span that covers the keywords contained
in that passage. Prefer smaller spans that include more keywords (Pasca 2003,
Monz 2004).

• The N-gram overlap between the passage and the question
Count the N-grams in the question and the N-grams in the answer passages.
Prefer the passages with higher N-gram overlap with the question (Brill et al.,
2002).

For question answering from the Web, instead of extracting passages from all
returned documents, we can rely on the Web search to do passage extraction for
us. We do this by using snippets produced by the Web search engine as the returned
passages. For example, Fig. 28.5 shows snippets for the first five documents returned
from Google for the query When was movable type metal printing invented in Korea?

Figure 28.5 Five snippets from Google in response to the query When was movable type
metal printing invented in Korea?

28.1.5 Answer Processing
The final stage of question answering is to extract a specific answer from the passage
so as to be able to present the user with an answer like 29,029 feet to the question
“How tall is Mt. Everest?”
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Two classes of algorithms have been applied to the answer-extraction task, one
based on answer-type pattern extraction and one based on N-gram tiling.

In the pattern-extraction methods for answer processing, we use information
about the expected answer type together with regular expression patterns. For ex-
ample, for questions with a HUMAN answer type, we run the answer type or named
entity tagger on the candidate passage or sentence and return whatever entity is la-
beled with type HUMAN. Thus, in the following examples, the underlined named
entities are extracted from the candidate answer passages as the answer to the HU-
MAN and DISTANCE-QUANTITY questions:

“Who is the prime minister of India”
Manmohan Singh, Prime Minister of India, had told left leaders that the
deal would not be renegotiated.

“How tall is Mt. Everest?”
The official height of Mount Everest is 29029 feet

Unfortunately, the answers to some questions, such as DEFINITION questions,
don’t tend to be of a particular named entity type. For some questions, then, instead
of using answer types, we use hand-written regular expression patterns to help ex-
tract the answer. These patterns are also useful in cases in which a passage contains
multiple examples of the same named entity type. Figure 28.6 shows some patterns
from Pasca (2003) for the question phrase (QP) and answer phrase (AP) of definition
questions.

Pattern Question Answer
<AP> such as <QP> What is autism? “, developmental disorders such as autism”
<QP>, a <AP> What is a caldera? “the Long Valley caldera, a volcanic crater 19

miles long”

Figure 28.6 Some answer-extraction patterns for definition questions (Pasca, 2003).

The patterns are specific to each question type and can either be written by hand
or learned automatically using relation extraction methods. Patterns can then be
used together with other information as features in a classifier that ranks candidate
answers. We extract potential answers by using named entities or patterns or even
just by looking at every sentence returned from passage retrieval and rank them using
a classifier with features like the following.

Answer type match: True if the candidate answer contains a phrase with the cor-
rect answer type.

Pattern match: The identity of a pattern that matches the candidate answer.
Number of matched question keywords: How many question keywords are con-

tained in the candidate answer.
Keyword distance: The distance between the candidate answer and query key-

words (measured in average number of words or as the number of keywords
that occur in the same syntactic phrase as the candidate answer).

Novelty factor: True if at least one word in the candidate answer is novel, that is,
not in the query.

Apposition features: True if the candidate answer is an appositive to a phrase con-
taining many question terms. Can be approximated by the number of question
terms separated from the candidate answer through at most three words and
one comma (Pasca, 2003).
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Punctuation location: True if the candidate answer is immediately followed by a
comma, period, quotation marks, semicolon, or exclamation mark.

Sequences of question terms: The length of the longest sequence of question
terms that occurs in the candidate answer.

An alternative approach to answer extraction, used solely in Web search, is
based on N-gram tiling, sometimes called the redundancy-based approach (BrillN-gram tiling

et al. 2002, Lin 2007). This simplified method begins with the snippets returned
from the Web search engine, produced by a reformulated query. In the first step,
N-gram mining, every unigram, bigram, and trigram occurring in the snippet is ex-N-gram mining

tracted and weighted. The weight is a function of the number of snippets in which
the N-gram occurred, and the weight of the query reformulation pattern that re-
turned it. In the N-gram filtering step, N-grams are scored by how well they matchN-gram

filtering
the predicted answer type. These scores are computed by hand-written filters built
for each answer type. Finally, an N-gram tiling algorithm concatenates overlapping
N-gram fragments into longer answers. A standard greedy method is to start with
the highest-scoring candidate and try to tile each other candidate with this candidate.
The best-scoring concatenation is added to the set of candidates, the lower-scoring
candidate is removed, and the process continues until a single answer is built.

For any of these answer-extraction methods, the exact answer phrase can just be
presented to the user by itself, or, more helpfully, accompanied by enough passage
information to provide helpful context.

28.2 Knowledge-based Question Answering

While an enormous amount of information is encoded in the vast amount of text
on the web, information obviously also exists in more structured forms. We use
the term knowledge-based question answering for the idea of answering a natural
language question by mapping it to a query over a structured database. Like the text-
based paradigm for question answering, this approach dates back to the earliest days
of natural language processing, with systems like BASEBALL (Green et al., 1961)
that answered questions from a structured database of baseball games and stats.

Systems for mapping from a text string to any logical form are called semantic
parsers (???). Semantic parsers for question answering usually map either to some
version of predicate calculus or a query language like SQL or SPARQL, as in the
examples in Fig. 28.7.

Question Logical form
When was Ada Lovelace born? birth-year (Ada Lovelace, ?x)

What states border Texas? λ x.state(x) ∧ borders(x,texas)
What is the largest state argmax(λx.state(x),λx.size(x))
How many people survived the sinking of

the Titanic
(count (!fb:event.disaster.survivors

fb:en.sinking of the titanic))

Figure 28.7 Sample logical forms produced by a semantic parser for question answering. These range from
simple relations like birth-year, or relations normalized to databases like Freebase, to full predicate calculus.

The logical form of the question is thus either in the form of a query or can easily
be converted into one. The database can be a full relational database, or simpler
structured databases like sets of RDF triples. Recall from Chapter 18 that an RDF
triple is a 3-tuple, a predicate with two arguments, expressing some simple relation
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or proposition. Popular ontologies like Freebase (Bollacker et al., 2008) or DBpedia
(Bizer et al., 2009) have large numbers of triples derived from Wikipedia infoboxes,
the structured tables associated with certain Wikipedia articles.

The simplest formation of the knowledge-based question answering task is to
answer factoid questions that ask about one of the missing arguments in a triple.
Consider an RDF triple like the following:

subject predicate object
Ada Lovelace birth-year 1815

This triple can be used to answer text questions like ‘When was Ada Lovelace
born?’ or ‘Who was born in 1815?’. Question answering in this paradigm requires
mapping from textual strings like ”When was ... born” to canonical relations in the
knowledge base like birth-year. We might sketch this task as:

“When was Ada Lovelace born?” → birth-year (Ada Lovelace, ?x)

“What is the capital of England?” → capital-city(?x, England)

28.2.1 Rule-based Methods

For relations that are very frequent, it may be worthwhile to write hand-written rules
to extract relations from the question, just as we saw in Section ??. For example, to
extract the birth-year relation, we could write patterns that search for the question
word When, a main verb like born, and that extract the named entity argument of the
verb.

28.2.2 Supervised Methods

In some cases we have supervised data, consisting of a set of questions paired with
their correct logical form like the examples in Fig. 28.7. The task is then to take
those pairs of training tuples and produce a system that maps from new questions to
their logical forms.

Most supervised algorithm for learning to answer these simple questions about
relations first parse the questions and then align the parse trees to the logical form.
Generally these systems bootstrap by having a small set of rules for building this
mapping, and an initial lexicon as well. For example, a system might have have built-
in strings for each of the entities in the system (Texas, Ada Lovelace), and then
have simple default rules mapping fragments of the question parse tree to particular
relations:

Who V ENTITY → relation( ?x, entity)

nsubj dobj

When V ENTITY → relation( ?x, entity)

tmod nsubj

Then given these rules and the lexicon, a training tuple like the following:

“When was Ada Lovelace born?” → birth-year (Ada Lovelace, ?x)

would first be parsed, resulting in the following mapping.
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When was Ada Lovelace born → birth-year(Ada Lovelace, ?x)

tmod

nsubj

From many pairs like this, we could induce mappings between pieces of parse
fragment, such as the mapping between the parse fragment on the left and the rela-
tion on the right:

When was · born → birth-year( , ?x)

tmod

nsubj

A supervised system would thus parse each tuple in the training set and induce a
bigger set of such specific rules, allowing it to map unseen examples of “When was
X born?” questions to the birth-year relation. Rules can furthermore be associ-
ated with counts based on the number of times the rule is used to parse the training
data. Like rule counts for probabilistic grammars, these can be normalized into prob-
abilities. The probabilities can then be used to choose the highest probability parse
for sentences with multiple semantic interpretations,

The supervised approach can be extended to deal with more complex questions
that are not just about single relations. Consider the question What is the biggest
state bordering Texas? from the GEOQUERY (Zelle and Mooney, 1996) dataset,
with the semantic form:

argmax(λx.state(x)∧borders(x, texas),λx.size(x)
This question has much more complex structures than the simple single-relation

questions we considered above, such as the argmax function, the mapping of the
word biggest to size and so on. Zettlemoyer and Collins (2005) shows how more
complex default rules (along with richer syntactic structures) can be used to learn to
map from text sentences to more complex logical forms. The rules take the training
set’s pairings of sentence and meaning as above and use the complex rules to break
each training example down into smaller tuples that can then be recombined to parse
new sentences.

28.2.3 Dealing with Variation: Semi-Supervised Methods
Because it is difficult to create training sets with questions labeled with their mean-
ing representation, supervised datasets can’t cover the wide variety of forms that
even simple factoid questions can take. For this reason most techniques for mapping
factoid questions to the canonical relations or other structures in knowledge bases
find some way to make use of textual redundancy.

The most common source of redundancy, of course, is the web, which contains
vast number of textual variants expressing any relation. For this reason, most meth-
ods make some use of web text, either via semi-supervised methods like distant
supervision or unsupervised methods like open information extraction, both intro-
duced in Chapter 18. For example the REVERB open information extractor (Fader
et al., 2011) extracts billions of (subject, relation, object) triples of strings from the
web, such as (“Ada Lovelace”,“was born in”, “1815”). By aligning these strings
with a canonical knowledge source like Wikipedia, we create new relations that can
be queried while simultaneously learning to map between the words in question and
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canonical relations.
To align a REVERB triple with a canonical knowledge source we first align

the arguments and then the predicate. Recall from Chapter 20 that linking a string
like “Ada Lovelace” with a Wikipedia page is called entity linking; we thus rep-entity linking

resent the concept ‘Ada Lovelace’ by a unique identifier of a Wikipedia page. If
this subject string is not associated with a unique page on Wikipedia, we can dis-
ambiguate which page is being sought, for example by using the cosine distance
between the triple string (‘Ada Lovelace was born in 1815’) and each candidate
Wikipedia page. Date strings like ‘1815’ can be turned into a normalized form us-
ing standard tools for temporal normalization like SUTime (Chang and Manning,
2012). Once we’ve aligned the arguments, we align the predicates. Given the Free-
base relation people.person.birthdate(ada lovelace,1815) and the string
‘Ada Lovelace was born in 1815’, having linked Ada Lovelace and normalized
1815, we learn the mapping between the string ‘was born in’ and the relation peo-
ple.person.birthdate. In the simplest case, this can be done by aligning the relation
with the string of words in between the arguments; more complex alignment algo-
rithms like IBM Model 1 (Chapter 23) can be used. Then if a phrase aligns with a
predicate across many entities, it can be extracted into a lexicon for mapping ques-
tions to relations.

Here are some examples from such such a resulting lexicon, produced by Berant
et al. (2013), giving many variants of phrases that align with the Freebase relation
country.capital between a country and its capital city:

capital of capital city of become capital of
capitol of national capital of official capital of
political capital of administrative capital of beautiful capital of
capitol city of remain capital of make capital of
political center of bustling capital of capital city in
cosmopolitan capital of move its capital to modern capital of
federal capital of beautiful capital city of administrative capital city of
Figure 28.8 Some phrases that align with the Freebase relation country.capital from
Berant et al. (2013).

Such lexicons also give many non-synonyms, so either have to use these as fea-
tures... ”major city of” largest city in ”largest city of” ”heart of” ”biggest city in”
”second largest city in” ”gateway to”

Another useful source of linguistic redundancy are paraphrase databases. For ex-
ample the site wikianswers.com contains millions of pairs of questions that users
have tagged as having the same meaning, 18 million of which have been collected
in the PARALEX corpus (Fader et al., 2013). Here’s an example:

Q: What are the green blobs in plant cells?
Lemmatized synonyms from PARALEX:
what be the green blob in plant cell?
what be green part in plant cell?
what be the green part of a plant cell?
what be the green substance in plant cell?
what be the part of plant cell that give it green color?
what cell part do plant have that enable the plant to be give a green color?
what part of the plant cell turn it green?
part of the plant cell where the cell get it green color?
the green part in a plant be call?
the part of the plant cell that make the plant green be call?



28.3 • USING MULTIPLE INFORMATION SOURCES: IBM’S WATSON 13

The resulting millions of pairs of question paraphrases can be aligned to each
other using MT alignment approaches (such as IBM Model 1) to create an MT-style
phrase table for translating from question phrases to synonymous phrases. These
are used by a number of modern question answering algorithms, generating all para-
phrases of a question as part of the process of finding an answer (Fader et al. 2013,
Berant and Liang 2014).

28.3 Using multiple information sources: IBM’s Watson

Of course there is no reason to limit ourselves to just text-based or knowledge-based
resources for question answering. The Watson system from IBM that won the Jeop-
ardy! challenge in 2011 is an example of a system that relies on a wide variety of
resources to answer questions.
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Figure 28.9 The 4 broad stages of Watson QA: (1) Question Processing, (2) Candidate Answer Generation,
(3) Candidate Answer Scoring, and (4) Answer Merging and Confidence Scoring.

Figure 28.9 shows the 4 stages of the DeepQA system that is the question an-
swering component of Watson.

The first stage is question processing. The DeepQA system runs parsing, named
entity tagging, and relation extraction on the question. Then, like the text-based
systems in Section 28.1, the DeepQA system extracts the focus, the answer type
(also called the lexical answer type or LAT), and performs question classification
and question sectioning

Consider these Jeopardy! examples, with a category followed by a question:

Poets and Poetry: He was a bank clerk in the Yukon before he published
“Songs of a Sourdough” in 1907.
THEATRE: A new play based on this Sir Arthur Conan Doyle canine
classic opened on the London stage in 2007.

The questions are parsed, named entities are extracted (Sir Arthur Conan Doyle
identified as a PERSON, Yukon as a GEOPOLITICAL ENTITY, “Songs of a Sour-
dough” as a COMPOSITION), coreference is run (he is linked with clerk) and rela-
tions like the following are extracted:
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authorof(focus,“Songs of a sourdough”)
publish (e1, he, “Songs of a sourdough”)
in (e2, e1, 1907)
temporallink(publish(...), 1907)

Next DeepQA extracts the question focus, shown in bold in both examples. Thefocus

focus is the part of the question that co-refers with the answer, used for example
to align with a supporting passage. The focus is extracted by hand-written rules—
made possible by the relatively stylized syntax of Jeopardy question—such as a rule
extracting any noun phrase with determiner “this” as in the Conan Doyle example,
and rules extracting pronouns like she, he, hers, him, as in the poet example.

The lexical answer type (shown in blue above) is a word or words which telllexical answer
type

us something about the semantic type of the answer. Because of the wide variety
of questions in Jeopardy, Jeopardy! uses a far larger set of answer types than the
sets for standard factoid algorithms like the one shown in Fig. 28.4. Even a large
set of named entity tags is insufficient to define a set of answer types. The DeepQA
team investigated a set of 20,000 questions and found that a named entity tagger
with over 100 named entity types covered less than half the types in these questions.
Thus DeepQA extracts a wide variety of words to be answer types; roughly 5,000
lexical answer types occurred in the 20,000 questions they investigated, often with
multiple answer types in each question.

These lexical answer types are again extracted by rules: the default rule is to
choose the syntactic headword of the focus. Other rules improve this default choice.
For example additional lexical answer types can be words in the question that are
coreferent with or have a particular syntactic relation with the focus, such as head-
words of appositives or predicative nominatives of the focus. In some cases even the
Jeopardy! category can act as a lexical answer type, if it refers to a type of entity
that is compatible with the other lexical answer types. Thus in the first case above,
he, poet, and clerk are all lexical answer types. In addition to using the rules directly
as a classifier, they can instead be used as features in a logisitic regression classifier
that can return a probability as well as a lexical answer type.

Note that answer types function quite differently in DeepQA than the purely
IR-based factoid question answerers. In the algorithm described in Section ??, we
determine the answer type, and then use a strict filtering algorithm only considering
text strings that have exactly that type. In DeepQA, by contrast, we extract lots of
answers, unconstrained by answer type, and a set of answer types, and then in the
later ‘candidate answer scoring’ phase, we simply score how well each answer fits
the answer types as one of many sources of evidence.

Finally the question is classified by type (definition question, multiple-choice,
puzzle, fill-in-the-blank). This is generally done by writing pattern-matching regular
expressions over words or parse trees.

In the second candidate answer generation stage, we combine the processed
question with external documents and other knowledge sources to suggest many
candidate answers. These candidate answers can either be extracted from text docu-
ments or from structured knowledge bases.

For structured resources like DBpedia, IMDB, or the triples produced by Open
Information Extraction, we can just query these stores with the relation and the
known entity, just as we saw in Section 28.2. Thus if we have extracted the rela-
tion authorof(focus,"Songs of a sourdough"), we can query a triple store
with authorof(?x,"Songs of a sourdough") to return the correct author.
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The method for extracting answers from text depends on the type of text docu-
ments. To extract answers from normal text documents we can do passage search
just as we did in Section 28.1. As we did in that section, we need to generate a query
from the question; for DeepQA this is generally done by eliminating stop words, and
then upweighting any terms which occur in any relation with the focus. For example
from this query:

MOVIE-“ING”: Robert Redford and Paul Newman starred in this depression-
era grifter flick. (Answer: “The Sting”)

the following weighted query might be extracted:

(2.0 Robert Redford) (2.0 Paul Newman) star depression era grifter (1.5 flick)

The query can be now be passed to a standard IR system. Some systems are
already set up to allow retrieval of short passages, and the system can just return
the ten 1-2 sentence passages that are needed for the next stage. Alternatively the
query can be passed to a standard document retrieval engine, and then from each
returned document passages are selected that are longer, toward the front, and have
more named entities.

DeepQA also makes use of the convenient fact that the vast majority of Jeopardy!
answers are the title of a Wikipedia document. To find these titles, we can do a
second text retrieval pass specifically on Wikipedia documents. Then instead of
extracting passages from the retrieved Wikipedia document, we directly return the
titles of the highly ranked retrieved documents as the possible answers.

Once we have a set of passages, we need to extract candidate answers. As we
just said, if the document is a Wikipedia page, we can just take the title, but for other
texts, like news documents, we need other approaches. Two common approaches
are to extract all anchor texts in the document (anchor text is the text between <a>anchor texts

and <\a> used to point to a URL in an HTML page), or to extract all noun phrases
in the passage that are Wikipedia document titles.

The third candidate answer scoring stage uses many sources of evidence to
score the candidates. One of the most important is the lexical answer type. DeepQA
includes a system that takes a candidate answer and a lexical answer type and returns
a score indicating whether the candidate answer can be interpreted as a subclass or
instance of the answer type. Consider the candidate “difficulty swallowing” and
the lexical answer type “manifestation”. DeepQA first matches each of these words
with possible entities in ontologies like DBpedia and WordNet. Thus the candidate
“difficulty swallowing” is matched with the DBpedia entity “Dysphagia”, and then
that instance is mapped to the WordNet type “Symptom”. The answer type “man-
ifestation” is mapped to the WordNet type “Condition”. The system looks for a
link of hyponymy, instance-of or synonymy between these two types; in this case a
hyponymy relation is found between “Symptom” and “Condition”.

Other scorers are based on using time and space relations extracted from DBpe-
dia or other structured databases. For example, we can extract temporal properties
of the entity (when was a person born, when died) and then compare to time expres-
sions in the question. If a time expression in the question occurs chronologically
before a person was born, that would be evidence against this person being the an-
swer to the question.

Finally, we can use text retrieval to help retrieve evidence supporting a candidate
answer. We can retrieve passages with terms matching the question, then replace the
focus in the question with the candidate answer and measure the overlapping words
or ordering of the passage with the modified question.
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The output of this stage is set of candidate answers, each with a vector of scoring
features.

In the final answer merging and scoring step, we first merge candidate answers
that are equivalent. Thus if we had extracted two candidate answers J.F.K. and John
F. Kennedy, this stage would merge the two into a single candidate. For proper
nouns, automatically generated name dictionaries can help in this task. One useful
kind of resource is the large synonym dictionaries that are created by listing all an-
chor text strings that point to the same Wikipedia page; such dictionaries give large
numbers of synonyms for each Wikipedia title — e.g., JFK, John F. Kennedy, John
Fitzgerald Kennedy, Senator John F. Kennedy, President Kennedy, Jack Kennedy,
etc. (Spitkovsky and Chang, 2012). For common nouns, we can use morphological
parsing to merge candidates which are morphological variants.

We then merge the evidence for each variant, combining the scoring feature
vectors for the merged candidates into a single vector.

Now we have a set of candidates, each with a feature vector. A regularized
logistic regression classifier is used to take each feature vector and assign a single
confidence value to this candidate answer. The classifier is trained on thousands
of candidate answers, each labeled for whether it is correct or incorrect, together
with their feature vectors, and learning to predict a probability of being a correct
answer. Since, in training, there are far more incorrect answers than correct answers,
we need to use one of the standard techniques for dealing with very imbalanced
data. DeepQA uses instance weighting, assigning an instance weight of .5 for each
incorrect answer example in training. The candidate answers are then sorted by this
confidence value, resulting in a single best answer.

The merging and ranking is actually run iteratively; first the candidates are
ranked by the classifier, giving a rough first value for each candidate answer, then
that value is used to decide which of the variants of a name to select as the merged
answer, then the merged answers are re-ranked,.

In summary, we’ve seen in the four stages of DeepQA that it draws on the in-
tuitions of both the IR-based and knowledge-based paradigms. Indeed, Watson’s
architectural innovation is its reliance on proposing very large number of candidate
answers from both text-based and knowledge-bases sources and then developing a
wide variety of evidence features for scoring these candidates —again both text-
based and knowledge-based. Of course the Watson system has many more com-
ponents for dealing with rare and complex questions, and for strategic decisions in
playing Jeopardy!; see the papers mentioned at the end of the chapter for many more
details.

28.4 Evaluation of Factoid Answers

A common evaluation metric for factoid question answering, introduced in the TREC
Q/A track in 1999, is mean reciprocal rank, or MRR. MRR assumes a test set ofmean

reciprocal rank
MRR questions that have been human-labeled with correct answers. MRR also assumes

that systems are returning a short ranked list of answers or passages containing an-
swers. Each question is then scored according to the reciprocal of the rank of the
first correct answer. For example if the system returned five answers but the first
three are wrong and hence the highest-ranked correct answer is ranked fourth, the
reciprocal rank score for that question would be 1

4 . Questions with return sets that
do not contain any correct answers are assigned a zero. The score of a system is then
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the average of the score for each question in the set. More formally, for an evaluation
of a system returning M ranked answers for a test set consisting of N questions, the
MRR is defined as

MRR =

∑N
i=1

1
ranki

N
(28.9)

A number of test sets are available for question answering. Early systems used
the TREC QA dataset; questions and hand-written answers for TREC competitions
from 1999 to 2004 are publicly available. FREE917 (Cai and Yates, 2013) has 917FREE917

questions manually created by annotators, each paired with a meaning representa-
tion; example questions include:

How many people survived the sinking of the Titanic?
What is the average temperature in Sydney in August?
When did Mount Fuji last erupt?

WEBQUESTIONS (Berant et al., 2013) contains 5,810 questions asked by webWEBQUES-
TIONS

users, each beginning with a wh-word and containing exactly one entity. Questions
are paired with hand-written answers drawn from the Freebase page of the question’s
entity, and were extracted from Google Suggest by breadth-first search (start with a
seed question, remove some words, use Google Suggest to suggest likely alternative
question candidates, remove some words, etc.). Some examples:

What character did Natalie Portman play in Star Wars?
What airport is closest to Palm Springs?
Which countries share land border with Vietnam?
What present day countries use English as their national language?

Bibliographical and Historical Notes
Question answering was one of the earliest NLP tasks, and early versions of the text-
based and knowledge-based paradigms were developed by the very early 1960s. The
text-based algorithms generally relied on simple parsing of the question and of the
sentences in the document, and then looking for matches. This approach was used
very early on (Phillips, 1960) but perhaps the most complete early system, and one
that strikingly prefigures modern relation-based systems, was the Protosynthex sys-
tem of Simmons et al. (1964). Given a question, Protosynthex first formed a query
from the content words in the question, and then retrieved candidate answer sen-
tences in the document, ranked by their frequency-weighted term overlap with the
question. The query and each retrieved sentence were then parsed with dependency
parsers, and the sentence whose structure best matches the question structure se-
lected. Thus the question What do worms eat? would match worms eat grass: both
have the subject worms as a dependent of eat, in the version of dependency grammar
used at the time, while birds eat worms has birds as the subject:
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What do worms eat Worms eat grass Birds eat worms

The alternative knowledge-based paradigm was implemented in the BASEBALL
system (Green et al., 1961). This system answered questions about baseball games
like “Where did the Red Sox play on July 7” by querying a structured database of
game information. The database was stored as a kind of attribute-value matrix with
values for attributes of each game:

Month = July

Place = Boston

Day = 7

Game Serial No. = 96

(Team = Red Sox, Score = 5)

(Team = Yankees, Score = 3)

Each question was constituency-parsed using the algorithm of Zellig Harris’s
TDAP project at the University of Pennsylvania, essentially a cascade of finite-
state transducers (see the historical discussion in Joshi and Hopely 1999 and Kart-
tunen 1999). Then a content analysis phase each word or phrase was associated with
a program that computed parts of its meaning. Thus the phrase ‘Where’ had code to
assign the semantics Place = ?", with the result that the question “Where did the
Red Sox play on July 7” was assigned the meaning

Place = ?

Team = Red Sox

Month = July

Day = 7

The question is then matched against the database to return to the answer. Sim-
mons (1965) summarizes other early QA systems.

Another important progenitor of the knowledge-based paradigm for question-
answering is work that used predicate calculus as the meaning representation lan-
guage. The LUNAR system (Woods et al. 1972,Woods 1978) was designed to beLUNAR

a natural language interface to a database of chemical facts about lunar geology. It
could answer questions like Do any samples have greater than 13 percent aluminum
by parsing them into a logical form

(TEST (FOR SOME X16 / (SEQ SAMPLES) : T ; (CONTAIN’ X16
(NPR* X17 / (QUOTE AL203)) (GREATERTHAN 13PCT))))

The rise of the web brought the information-retrieval paradigm for question an-
swering to the forefront with the TREC QA track beginning in 1999, leading to a
wide variety of factoid and non-factoid systems competing in annual evaluations.

The DeepQA component of the Watson system that won the Jeopardy! challenge
is described in a series of papers in volume 56 of the IBM Journal of Research and
Development; see for example Ferrucci (2012), Lally et al. (2012), Chu-Carroll et al.
(2012), Murdock et al. (2012b), Murdock et al. (2012a), Kalyanpur et al. (2012), and
Gondek et al. (2012).

Question answering is also an important function of modern personal assistant
dialog systems; see Chapter 24 for more.
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