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Abstract

This paper develops and tests formulas for representing playing strength at chess by the
quality of moves played, rather than by the results of games. Intrinsic quality is estimated via
evaluations given by computer chess programs run to high depth, ideally so that their playing
strength is sufficiently far ahead of the best human players as to be a ‘relatively omniscient’
guide. Several formulas, each having intrinsic skill parameterss for sensitivityandc for con-
sistency, are argued theoretically and tested by regression on large sets of tournament games
played by humans of varying strength as measured by the internationally standard Elo rating
system. This establishes a correspondence between Elo rating and the parameters. A smooth
correspondence is shown between statistical results and the century points on the Elo scale,
and ratings are shown to have stayed quite constant over time. That is, there has been little
or no ‘rating inflation’. The theory and empirical results are transferable to other rational-
choice settings in which the alternatives have well-defined utilities, but in which complexity
and bounded information constrain the perception of the utility values.

Keywords. Computer games, chess, sequential decision making, probabilistic inference,
machine learning, data mining, statistics.

1 Introduction

Player strength ratings in chess, and other games including Go, ScrabbleR©, and Backgammon, are
based on the results of games, and are subject to both luck when opponents blunder and to drift
in the player pool. This paper aims to rate players intrinsically by the quality of their decisions,
as benchmarked by computer programs run to sufficient depth. Our work brings new evidence on
controversial questions of import to the chess community, with ramifications for skill assessment
in other games:

1. Has there been ‘inflation’—or deflation—in the chess Elo rating system over the past forty
years?

2. Were the top players of earlier times as strong as the top players of today?
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3. Does a faster time control markedly reduce the quality of play?

4. Can recorded games from tournaments where high results by a player are suspected as fraud-
ulent reveal the extent to which luck or collusion played a role?

A previous study [GB06] evaluated only the chess world champions, used a relatively low depth
(12 ply) of the now sub-elite program CRAFTY [Hya11], and most importantly for our purposes,
evaluated only the played move and Crafty’s preferred move, if different. The departure point for
our work is that to assess chess skill more accurately, we use the more-informed context provided
by the evaluations of all possible moves. At a game turn withL-many legal moves, we can list
themm0,m1, . . . ,mL−1 in order of their evaluationse(m0), e(m1), . . . , e(mL−1), and use these
as a measure of the moves’ utilities. Engines are often set to give the evaluations always from
White’s point of view, but we definee(mi) in terms of the player to move, in the standard units of
a hundredth of a pawn. Thus the evaluations are listed in non-increasing order.

Themain statistical principleis that when the movem0 is given a clear standout evaluation, it
is more likely to be selected by a human player than when it is given slight preference over several
alternatives. For instance, ife(m0) ≈ e(m4) � e(m5), then each of the five best moves should
have somewhere near 20% probability.

Basically all chess programs proceed byiterative deepening, which means that move evalua-
tions are computed for successive base-search depthsd = 1, 2, 3, . . ., and the values at depthd− 1
are used to structure the search at depthd. Our theory is formally indifferent about whether the
evaluations come from a single program or are averaged over a jury of programs. The work re-
ported here used the commercial chess program RYBKA 3 [RK07], which was rated the strongest
program on the CCRL rating list [B+10] between its release in August 2007 and the release of
RYBKA 4 in May 2010. RYBKA 3 was run in a mode that evaluates up to 50 moves fully, except
for pruning the search for moves evaluated over 4 pawns worse than the optimal move, until it
reported the end of the depth-13 iteration. In the vast majority of positions there were fewer than
50 un-pruned moves, so cappingL at 50 did not affect the context information. A complication of
using different chess programs is that the same search depth can represent widely different play-
ing strengths between programs, since one may invest more time in advanced search heuristics
and/or (pseudo-)random ‘Monte Carlo’ simulations of play starting with a given move, and hence
take longer to complete the iteration at each depth. There have also been hearsay allegations that
RYBKA versions understate the actual depth.

The only game-specific information used by our methods is the sequence of valuese(mi) and
the identity of the movem∗ that was actually played. This minimal information is common to
other games, and can come from any decision-making scenario in which authoritative evaluations
of options are available, beyond what is comprehended by agents who are subject to bounded
rationality. The general problem is to what extent the probabilities of selection of the various
options are correlated with these actual (hindsight) utility values.

2 Background and Previous Literature

The Elo rating system [Elo78] computes an expected scoreE based on the differencesrP − rO
between the rating of a playerP and the ratings of various opponentsO, and updatesrP according
to the difference between the actual score andE. Since only rating differences matter there is
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no absolute meaning to the numbers produced, but considerable effort has been expended by the
World Chess Federation (FIDE) and national federations to keep the ratings stable over time. The
term ‘master’ generally designates a player rated 2200 or above, while grandmasters typically have
ratings above 2500, and world champions since Bobby Fischer in 1972 have held ratings around
2800. This paper samples games between players rated within 10 points of a given Elo century
mark.

By fitting to itemized skill levels, our paper continues work onreference fallible agentsin the
game context [RB83, Haw03, HA04, AH05]. The aim is create stochastic agents whose overall
behavior imitates that of actual players. The present work establishes that such a reference-fallible
model is well supported by data taken on a far larger scale than previous studies. This paper uses
a richer model than [DHR09, HRD10] which are based on Bayesian inference.

We have already mentioned the Guid-Bratko study. Their ‘Average Difference’ (AD) statistic is
the average ofe(m0)−e(m∗), subject to some adjustments for ‘complexity’ that we did not employ.
We ran not only their selection of world-championship games but also more than 150,000 high-
level games representing most of the history of chess, using RYBKA 3 to depth 13 in Single-PV
mode, which is the program’s normal playing mode. Owing to search-pruning and the program’s
manner of reporting results, this mode guarantees full evaluation only for the preferred movem0.
Thus when the played movem∗ was different,e(m∗) was estimated by using the evaluatione(m′0)
of the position that resulted fromm∗ being played. These runs were used in the work reported here
only to determine a scaling adjustment described in Section 3.1 below.

3 Basic Model

Our key abstract concept is a model fallible agentA, which is intended to represent a playerP of
a given skill level. The agents are stochastic, so the main question is, what is the probabilitypi of
A choosing movemi at a given game turnt? We wish to generate values ofpi, based on the values
of fitted parameters that defineA, that are realistic for the playersP thatA is modeling. Once
the parameters are given,pi should be a function of the evaluationse(mj) of the available moves
at turnt. Before introducing our parameters, we note three principles about the definition of the
agentsA.

(a) The choices made byA at different game turns are independent, even for successive game
turns.

(b) The context of alternative move choices is used only to defineprobability proxies yi for the
movesmi. The proxies depend on any agent parameters, here calleds andc and defined
below, but the manner of converting them into the projected probabilitiespi does not. The
latter conversion is the same for all agents, modeling players of all skill levels.

(c) For all agentsA, the proxies are given by selecting a curvegA from a family of like curves
according to the parameters for that agent, and computingyi = gA(δi). Hereδi is computed
from the differencee(m0)−e(mi) but weighted as described below, whilegA is acontinuous,
decreasingfunction ofδi, with gA(0) = 1.

Principle (a) is needed in order to regardpi as a function of information for the given turnt alone.
It enables us to multiply probabilities from different turns, and add probabilities to project (for
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instance) the total number of matches to a computer’s first choices over a sequence of moves. It
stands in contradistinction to the reality that an actual player’s consecutive moves are often part of
an overall plan.

Principle (b) allows the presence and values of alternative moves to affect the probabilitypi
of a given movemi. The difference from saying thatpi itself depends one(mi) ande(m0) alone,
which would ignore the context information of alternative move choices, is that the proxies undergo
a separate conversion. This need not be the simple normalizationpi = yi/Y whereY =

∑
j yj.

In general we consider functionsr(·) that determine the following kind of relation between the
proxies and the probabilities:

yi =
r(pi)

r(p0)
.

Choosingr to be the identity function leads to the simple normalization above. We found, however,
that better results are obtained by usingr(p) = 1/ ln(1/p) instead. Then the conversion from the
proxies into the projected probabilities is obtained by solving the equations

pi = p
1/yi
0 ;

∑
i

pi = 1.

Principle (c) mandates that inferior moves have smaller proxies, for all agents. It also implies
that a revision downward in the authoritative value of a move causes the model to generate a smaller
proxy for it, which yields a smaller probability for it, for all agents and regardless of the values of
other moves.

3.1 Evaluation Scaling

When one side is far ahead, one might expect that player to care less about small differences in
value, and the player who is behind to take risks that a machine sees how to answer at high depth
but a human may not. We thought this effect might materialize when the advantage was more than
a pawn, but in fact we observed a uniform scaling effect all the way down to zero advantage. From
the supplementary Single-PV data on over 150,000 chess games mentioned above, we compiled
histograms by plotting the recorded ‘raw’ AD statistic againste(m0) in intervals of 0.05 or 0.10,
excluding the origin. It was also found that the raw AD for moves where the computer judges the
player to be at a disadvantage−e is significantly higher than for an advantage of+e.

These observations suggested that to model this large-scale human behavior, the agents’δi
should not always bee(m0)− e(mi), but rather the integral frome(m0) to e(mi) of some function
defining a non-unit differential. The simple differentialdµ = 1

1+x
dx, with integralln(1 + x), was

found to level the AD histogram very well, in aggregations of all kinds of chess events: round-
robin tournaments of every level and historical era, championship matches, open Swiss events,
rapid, and blitz. Note that in case of a move judged inferior byb pawns, the integral for the player
at a disadvantage goes from−e to−e−b, away from the origin, while for the player starting ahead
+e the integral goes frome to e − b, toward the origin. The former will be scaled down more,
thus tending to equalize the resultingscaled AD(ad) for the−e and+e points of the modified
histogram.

The steepness of this scaling also reduced the difference between, say, a 2-pawn blunder and a
5-pawn blunder. This is desirable because both blunders may be equally fatal, hence nearly equally
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unlikely for a strong player. Moreover, RYBKA 3 was the first program to offer a ‘Multi-PV cap’
feature whereby it prunes the search when a move is found to be more-than-the-cap worse than the
top move. Setting this at 4.00 pawns saved huge amounts of time computing bad moves, and also
skirted a known issue with all RYBKA versions when the evaluation exceeds±5.09 pawns.

Finally, it was observed that in cases of equal-top moves, the first-listed move was played sig-
nificantly more often, to similar degree across all training sets. To compensate for this phenomenon
(see Section 8 for speculation on cause), a correction of -0.03 on later tied moves was determined
and applied in-tandem with the scaling.

We did not try to optimize the scaling, for instance by findingc such thatdµ′ = 1
c+x

dx achieved
a better measure of ‘level’ across some suite of data sets. Optically allc outside[0.8, 1.2] produced
inferior results. Rather than compose the integralln(1 + x) into the curvesgA defining the agents,
we regarded the scale correction as a natural feature of the data and the model, common to all
agents modeling human players. We speculate that other games will be found to obey a similar
scaling law, perhaps implying that human perception of value differences is figuratively judged on
log-log paper in proportion to the overall advantage or disadvantage.

4 Parameterizing the Fallible Agents

We regard the following two parameterss, c as core features of agent behavior, with common
meanings across the agent space, and across alternate curve choices described below. We introduce
them via the inverse-exponential curve used for the results in this paper:

yi = e−(δi/s)
c

. (1)

The s parameter represents a conversion from the hundredths-of-a-pawn units ofδi into the
dimensionless quantityδi/s used in all of our curves. The smallers, the greater the ratioδi/s, thus
lowering the proxy and hence the projected probability of thei-th move. Thuss governs an agent’s
ability to discriminate among moderately inferior move choices, so we call it thesensitivity.

The parameterc appears as an exponent ofδ/s, directly or with some intervening terms. Intu-
itively it governs how often a player avoids moves in the range the player discriminates as inferior,
and avoids poor moves overall. Hence we regard it as a notion ofconsistency.

Although it is a digression from the results to mention other curve families, the following
alternatives, all normalized to makeg(0) = 1, illustrate the parameters in similar roles:

• Inverse-polynomial curves:

ipa(δ) =
1

1 + (δ/s)c
, or

ipb(δ) =
1

(1 + δ/s)c
.

• Logistic function-related curves:

secha(δ) =
2

(e(δ/s)c + e−(δ/s)c)
or

sechb(δ) =
4

(e(δ/s)c + 2 + e−(δ/s)c)
.
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All of these curves were found to give similar results, largely owing to the way they approxi-
mate each other near the origin. As stated above, we standardized our present work on the inverse-
exponential family.

5 Data Methodology and Experiments

The main data set comprised games in which both players were within 10 Elo rating points of one
of the ‘milepost’ values: 2700, 2600, 2500, . . . , run under standard time controls in individual-
player round-robin or small-Swiss tournaments. Team events and large-Swiss (meaning more than
six times as many players as rounds) tournaments were excluded. Games were taken from three
time periods: 2006–2009, 1991–1994, and 1976–1979. These games were evaluated to depth
13 ply in 50-PV mode, using single core threads for each program instance on a 64-bit quad-core
PC. Turns 1–8 of every game were skipped, as were turns that were identified as part of a repetition,
and positions with greater than three pawns’ advantage.

Each such ‘milepost data set’ had at least 5,000 turns, while the largest set had just over 25,000
turns, so the relative sizes were reasonably consistent. Each set comprisedall available games
meeting the description, from two major commercial game collections [Che09, H+10], so as to
avoid any bias in game selection.

For 1976–1979 it was possible to find reliable and large-enough game sets only for the 2300
through 2600 mileposts, while 1991–1994 made it possible to add 2700 and 2200. Since FIDE has
expanded its rating system to players below 2200 in recent years, for 2006–2009 it was possible to
find enough games down to 1600. The ranges around mileposts were expanded from±10 to±15
or±20 for some of the lower sets.

Co-designer GM Larry Kaufman opined that RYBKA 3 at reported depthd = 14 would play at
2750 level, stronger in the early phases but weaker in the endgame [Kau08]. By general consider-
ations, and consistent with his estimates for low depth in the same forum thread, this would place
depth 13 in the 2650-to-2700 range. This choice enabled the over 6,000 games in the data sets to
be analyzed on available hardware over a reasonable timeframe, at 6-8 hours per processor core
per game on average.

6 Fitting Methodology

This section describes how we determined the best agentA = As,c to model the players in each
‘milepost’ data set. Recall that the analysis of the position at a given game turnt furnishes values
δti for each movemi (after scaling, and always withδt0 = 0). For any fixed valuess, c defining
the agent, we obtain the proxy valuesyti = gs,c(δ

t
i). The proxies are then converted into the

probabilitiespi that agentAs,c chooses movemi. It remains to see how well these probabilities
correspond to frequencies of move choice in the data set.

Given the probabilitiespti for each game turnt, we can also generate aggregate projections for
the agreementmm0 between the first-listed movesmt

0 and the movesmt
∗ that were actually played,

and for the average error, by:

mmp =
1

T

∑
t

pt0
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adp =
1

T

∑
t

(
∑
i

δtip
t
i).

We can similarly project the frequencyMi = 1
T

∑
t p

t
i of playing thei-th best move, for alli

(so mmp = M0). These projected quantities depend (only) on the machine evaluations of the
moves and the parameterss, c which yield thepti. It remains to find thes, c for which these
quantities are in best accord with the frequenciesmma(i) over t such thatmt

∗ = mt
i, for each

i = 0, 1, 2, . . ., and for whichadp agrees with the actual (scaled) average difference, calculated as
ada = 1

T

∑
t(e(m

t
0)− e(mt

∗)). This suggests several fitting ideas:

• Calculates, c to makemmp = mma(0) andadp = ada, or if that is not possible, to minimize
the (squared) distance between the respective sides of each equation.

• Calculates, c to maximize the projected likelihood
∏
t p

t
∗, which the same as minimizing∑

t ln(1/pt∗).

• The ‘percentiling’ method described next, which we actually used.

The trouble observed with the first is that the projections generated forMi, i > 0, were wide
of the mark. The second failed to yield even remotely accurate projections formmp andadp. The
third attempts to make theMi projections fori ≥ 1 more accurate. First we motivate it.

If all spread tupleswere the same∆ = (0, δ1, . . . , δN−1), or if we had a large-enough set of
nearly-equal tuples to form a histogram, fitting the results to a curve would be relatively simple.
Let f1, f2, . . . , fN , fN+1 be the observed frequencies of which indexed move in the spread was
played, withfN+1 standing for “move played not in the topN ” and hopefully negligibly small.
Then given a curvegs,c(δ) and (power-of-)metricµ, such asµ(x, y) = |x − y|2 for least-squares,
we could compute the fit scoreSs,c =

µ(f1,
1

S
) + µ(f2,

gs,c(δ2)

S
) + · · ·+ µ(fN ,

gs,c(δN)

S
),

whereS = 1 + gs,c(δ2) + · · · + gs,c(δN). In the case of equal spreads this yields the same best-fit
s, c as maximum-likelihood estimation.

When the tuples are different, however, we cannot do this. The idea is to use a fixed grid of
percentile points rather than allow theδi to set the grid. Given a curvegs,c(δ), let q additionally
stand for a percentile. For each point(q, s, c) in a fine-enough grid, say steppingq by 0.05 from
0 to 1, s by 0.02 from 0 to 0.70, andc by 0.20 from 1 to 5, we iterate through each spread tuple
∆t = (0, δ2, . . . , δN). For eachi, 1 ≤ i ≤ N , compute the probabilitiespi = gs,c(δi)/St, where
St =

∑
i gs,c(δi). Let it be the index of the played move. Definep− =

∑it−1
j=1 pj andp+ = p−+ pit,

giving the endpoints of the predicted probability interval of the played move. Then:

• If p+ ≤ q, call the tuple ‘up’.

• If p− ≥ q, call the tuple ‘down’.

• If p− < q < p+, so that the prediction for the played move straddles theq-th percentile,
count the tuple as being|q − p−|/pit up, and|q − p+|/pit down.
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Finally defineRq
s,c to be the percentage of ‘up’ tuples. Given aµ as above, the score now becomes

Ss,c =
∑
q

µ(Rq
s,c, q).

A low score indicates a good fit across a range of percentiles for the curvegs,c(δ).
To interpret this, consider a case with one clearly-best move given probabilityp0 = 0.9 that is

played. Forq = 0.30 the tuple will count as one-third up, two-thirds down. It may seem counter-
intuitive for a result that confirms a prediction to give an overall ‘down’ score, but the prediction
that is actually tested by our method is not the individual move but the overall frequency of hits
above/below a given percentile. Nor is it necessary to estimate the proportion of the cumulative
distribution ofgs,c(δ) to the left and right of0.30 in the spanned range—the straight one-third/two-
thirds division is correct. In effect we have converted from the ‘δ scale’ to the percentile scale,
with the effect that instead of plotting data points for a horizontalδ-axis and fittinggs,c(δ), we fit
the derived percentile curve(s) instead.

The quality of fit can be judged in several ways. One is theSs,c score itself, divided by the
number of percentile points. Another is the average value ofµ(Mi,mma(i)) over all move-indices
i. The latter speaks the purpose of the percentiling method for fitting the frequencies of playing
the ith-best move for alli, in a way that involves no explicit correction for skedasticity. Since the
µ used here is squared-distance and we compare percentages, we multiplied by10, 000 to create
the ‘Qfit ’ entries in the tables below.

7 Results

A statistical analyzing program written in C++ carried out the two-dimensional minimization
needed to implement the above fitting method. It was found that whiles varied from0.07 to
0.16 and beyond, thec value stayed between0.430 and0.545. Accordingly we computed a linear
interpolation of thec values for 2006–2009, getting intervals coincidentally highly close to0.007,
yielding thecfit column. With these fixed, one-dimensional fitting of thes-values then gave the
final sfit values. Thesfit andcfit values defined the agents, for which projected move-match and
average-difference statistics (mmp andadp) are shown compared with the actuals (mma andada),
which together with the aboveQfit measure are shown in the following tables.

8



2006–2009

Elo s c cfit sfit mmp/mma adp/ada Qfit

2700 .078 .503 .513 .080 56.2/56.3 .056/.056 .009
2600 .092 .523 .506 .089 55.0/54.2 .063/.064 .041
2500 .092 .491 .499 .093 53.7/53.1 .067/.071 .028
2400 .098 .483 .492 .100 52.3/51.8 .072/.074 .016
2300 .108 .475 .485 .111 51.1/50.3 .084/.088 .044
2200 .123 .490 .478 .120 49.4/48.3 .089/.092 .084
2100 .134 .486 .471 .130 48.2/47.7 .099/.102 .034
2000 .139 .454 .464 .143 46.9/46.1 .110/.115 .065
1900 .159 .474 .457 .153 46.5/45.0 .119/.125 .166
1800 .146 .442 .450 .149 46.4/45.4 .117/.122 .084
1700 .153 .439 .443 .155 45.5/44.5 .123/.131 .065
1600 .165 .431 .436 .168 44.0/42.9 .133/.137 .129

1991–1994

Elo s c cfit sfit mmp/mma adp/ada Qfit

2700 .079 .487 .513 .084 55.2/54.9 .058/.060 .043
2600 .092 .533 .506 .087 55.3/54.6 .064/.063 .042
2500 .098 .500 .499 .092 54.3/53.8 .068/.069 .013
2400 .101 .484 .492 .103 52.3/51.9 .077/.079 .016
2300 .116 .480 .485 .117 51.0/50.3 .088/.091 .031
2200 .122 .477 .478 .122 49.7/48.7 .092/.098 .058

1976–1979

2600 .094 .543 .506 .087 53.8/53.0 .062/.061 .038
2500 .094 .512 .499 .091 53.2/52.5 .067/.068 .032
2400 .099 .479 .492 .103 52.3/51.7 .076/.079 .020
2300 .121 .502 .485 .116 50.9/50.0 .088/.090 .070

We conclude that there is a smooth relationship between the actual players’ Elo ratings and
the intrinsic quality of the move choices as measured by the chess program and the agent fitting.
Moreover, the finalsfit values obtained are nearly the same for the corresponding entries of all
three time periods. Since a lowers indicates higher skill, we conclude that there has been little
or no ‘inflation’ in ratings over time—if anything there has been deflation. This runs counter to
conventional wisdom, but is predicted by population models on which rating systems have been
based [Gli99].

The results also support a no answer to question 2. In the 1970’s there were only two players
with ratings over 2700, namely Bobby Fischer and Anatoly Karpov, and there were years as late
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as 1981 when no one had a rating over 2700 (see [Wee00]). In the past decade there have usually
been thirty or more players with such ratings. Thus lack of inflation implies that those players
are better than all but Fischer and Karpov were. Extrapolated backwards, this would be consistent
with the findings of [DHMG07], which however (like some recent competitions to improve on the
Elo system) are based only on the results of games, not on intrinsic decision-making.

8 Summary and Future Agenda

We have demonstrated that the intrinsic quality of move choice can be ascertained based on bench-
marking measures rather than the results of games. We have modeled actual players by a class
of stochastic agents employing full information about alternative move choices, and have demon-
strated a smooth correlation between their parameters obtained by standard regression techniques
and the players’ Elo ratings. We have shown that the general belief that the Elo ratings of strong
players suffer from inflation is ill-founded.

We have essentially fitted only the means of the respective skill levels. The next task is to
obtain projected variances and confidence intervals, and test their correspondence to the training
data. This will yield a model of move choice that is capable of testing allegations of collusion
during games, thus answering question 4. Testing the curve of skill as a function of time alotted
per game, for question 3, will require larger amounts of data.

Another use for our model will be a better simulation of human players of specified skill levels,
especially being faithful to their observed tendency to make occasional poor moves. Among other
things, this may yield more-realistic settings for human-computer play and practical tournament
training. Insofar as our methods involve almost no information specific to chess, they should be
transferable to other domains.

To add to the above about the preliminary nature of this work, the first author believes that an
important improvement will be to involve the evaluationsed(mi) of moves at depthsd lower than
the reference depth. The extended model computes probability proxies as linear combinations with
non-negative weightswd over the depths, namely:

yi =
∑
d

wd · gs,c(δi,d).

All other formalism is the same—hence this paper can be viewed as the special casew13 = 1, all
other weights zero. The weightswd are also agent properties; we would expect stronger players to
have higher weights for higherd. Of course the weights would proliferate the number of parameters
needing to be fitted.

One effect of using this extended model would be that movesmi whose strength becomes
apparent only at higher depths would have loweryi values than the present paper computes, es-
pecially for agents modeling weaker players. Moves whose evaluations fall would have higher
proxies, and avoiding them would be another measure of skill. These effects might cancel in large
enough test sets. We also speculate that the equal-top move effect in Section 3.1 may owe to the
first move having had higher value at the lowest depthsd, which thewd might correct for naturally,
but we have been hindered in investigating this by issues with the reporting of the bottom depths in
RYBKA 3. Only recently have open-source engines of comparable strength emerged. Using other
programs, going to higherd, and improving the mining of our many gigabytes of data are slated
for future work.
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Further methodological details, including the incidence of gamescore errors in the test-data sets
and the policy on fixing them, and difficulties in the identification of repetitions (amending ‘0.00’
values given by chess programs that are premature according to the rules of chess), will be found
in links from the first-author’s website,www.cse.buffalo.edu/ ∼regan/chess/ , along with
the data and C++ and Perl code used here.
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