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1. Introduction

A Markov chain is, roughly speaking, some collection of random variables with
a temporal ordering which have the property that conditional upon the present, the

future does not depend upon the past. This concept, which can be viewed as a form
of something known as the Markov property, will be made precise below, but the
principle point is that such collections lie somewhere between one of independent

random variables and a completely general collection which could be extremely
complex to deal with.

Andrei Andreivich Markov commenced the analysis of such collections of ran-
dom variables in 1907, and their analysis remains an active area of research to this
day. The study of Markov chains is one of the great achievements of probability
theory. In his seminal work [3], Andrei Nikolaevich Kolmogorov remarked “Histor-
ically, the independence of experiments and random variables represents the very
mathematical concept that has given probability its peculiar stamp”.

However, there are many situations in which it is necessary to consider sequences
of random variables which cannot be considered to be independent. Kolmogorov
went on to observe that “[Markov et al.] frequently fail to assume complete inde-
pendence, they nevertheless reveal the importance of assuming analogous, weaker
conditions, in order to obtain significant results”. The aforementioned Markov
property, the defining feature of the Markov chain, is such an analogous, weaker

condition and it has proved both strong enough to allow many, powerful results to
be obtained whilst weak enough to allow it to encompass a great many interesting
cases.

Much of the development in probability theory during the latter part of the
last century consisted of the study of sequences of random variables which are not
entirely independent. Two weaker, but related conditions proved to be especially
useful: the Markov property which defines the Markov chain and the martingale

property. Loosely speaking, a martingale is a sequence of random variables whose
expectation at any point in the future, conditional upon the past and present is
equal to its present value. There is a broad and deep literature on the subject of
martingales, which will not be discussed in this article. A great many people have
worked on the theory of Markov chains, as well as their application to problems in
a diverse range of areas, over the past century and it is not possible to enumerate
them all here.

There are two principal reasons that Markov chains play such a prominent rôle
in modern probability theory. The first is that they provide a powerful yet tractable
framework in which to describe, characterise and analyse a broad class of sequences
of random variables which find applications in numerous areas from particle trans-
port through finite state machines and even in the theory of gene expression. The
second is that a collection of powerful computational algorithms have been devel-
oped to provide samples from complicated probability distributions via the simu-
lation of particular Markov chains: these Markov chain Monte Carlo methods are
now ubiquitous in all fields in which it is necessary to obtain samples from complex
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probability distributions and this has driven much of the recent research in the field
of Markov chains.

The areas in which Markov chains arise are far too numerous to list here, but
here are some typical examples:

• Any collection of independent random variables forms a Markov chain: in
this case, given the present the future is independent of the past and the

present.
• The celebrated symmetric random walk over the integers provides a classical

example: the next value taken by the chain is one more or less than the
present value with equal probability, regardless of the route by which the
present value was reached. Despite its simplicity, this example, and some
simple generalisations can exhibit a great many interesting properties.

• Many popular board games have a Markov chain representation – for ex-
ample, “Snakes and Ladders”, in which there are 100 possible states for
each counter (actually, there are somewhat fewer, as it is not possible to
end a turn at the top of a snake or the bottom of a ladder) and the next
state occupied by any particular counter is one of the six states which can
be reached from the current one, each with equal probability. So, the next
state is a function of the present state and an external, independent random
variable corresponding to the roll of a die.

• More practically, the current amount of water held in a reservoir can be
viewed as a Markov chain: the volume of water stored after a particular
time interval will depend only upon the volume of water stored now and
two random quantities: the amount of water leaving the reservoir and the
amount of water entering the reservoir. More sophisticated variants of this
model are used in numerous areas, particularly within the field of queueing
theory (where water volume is replaced by customers awaiting service).

• The evolution of a finite state machine can be viewed as the evolution of a
(usually deterministic) Markov chain.

It is usual to think of Markov chains as describing the trajectories of dynamic
objects. In some circumstances there is a natural dynamic system associated with a
collection of random variables with the right conditional independence structure –
the random walk example discussed previously, for example, can be seen as moving
from one position to the next, with the nth element of the associated Markov
chain corresponding to its position at discrete time index n. As the distribution of
each random variable in the sequence depends only upon the value of the previous
element of the sequence, one can endow any such collection (assuming that one
can order the elements of the collection, which the definition of a Markov chain
employed here ensures is always possible) with a dynamic structure. One simply
views the distribution of each element, conditional upon the value of the previous
one as being the probability of moving between those states at that time. This
interpretation provides no great insight, but it can allow for simpler interpretations
and descriptions of the behaviour of collections of random variables of the sort
described here. Indeed, it is the image of a chain of states, each one leading to the
next which suggests the term Markov chain.

2. Stochastic Processes

In order to proceed to the formal definition of a Markov chain, it is first neces-
sary to make precise what is meant by a collection of random variables with some
temporal ordering. Such a collection of random variables may be best characterised
as a stochastic process. An E-valued process is a function X : I → E which maps
values in some index set I to some other space E. The evolution of the process is
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described by considering the variation of Xi := X(i) with i. An E-valued stochastic

process (or random process) can be viewed as a process in which, for each i ∈ I,
Xi is a random variable taking values in E.

Although a rich literature on more general situations exists, this article will
consider only discrete time stochastic processes in which the index set I is the
natural numbers, N (of course, any index set isomorphic to N can be used in the
same framework by simple relabeling). The notation Xi is used to indicate the value
of the process at time i (note that there need be no connection between the index set
and real time, but this terminology is both convenient and standard). Note that the
Markov property may be extended to continuous time processes in which the index
set is the positive real numbers, and this leads to a collection of processes known
as either Markov processes or continuous time Markov chains. Such processes are
not considered further here, as they are of somewhat lesser importance in computer
science and engineering applications. A rich literature on these processes does exist,
and many of the results available in the discrete time case have continuous time
analogues – indeed, some results may be obtained considerably more naturally in
the continuous time setting.

At this point, a note on terminology is necessary. Originally, the term “Markov
chain” was used to describe any stochastic process with the Markov property and a
finite state space. Some references still use this definition today. However, in com-
puter science, engineering and computational statistics it has become more usual
to use the term to refer to any discrete time stochastic process with the Markov
property, regardless of the state space, and this is the definition used here. Con-
tinuous time processes with the Markov property will be termed Markov processes,
and little reference will be made to them. This usage is motivated by considerations
arising from Markov chain Monte Carlo methods and is standard in more recent
literature.

2.1. Filtrations and Stopping Times. This section consists of some technical
details which, whilst not essential to a basic understanding of the stochastic process
or Markov chains in particular, are fundamental and will be encountered in any work
dealing with these subjects.

A little more technical structure is generally required to deal with stochastic
processes than with simple random variables. Whilst technical details are avoided
as far as possible in this article, the following concept will be needed to understand
much of the literature on Markov chains.

To deal with simple random variables, it suffices to consider a probability space
(Ω,F , P) in which Ω is the set of events, F is the σ-algebra corresponding to the
collection of measurable outcomes (i.e. the collection of subsets of Ω to which it
is possible to assign a probability; typically the collection of all subsets of Ω in
the discrete case) and P is the probability measure, which tells us the probabil-
ity that any element of F contains the event which occurs: P : F → [0, 1]. To
deal with stochastic processes it is convenient to define a filtered probability space

(Ω,F , {Fi}i∈N, P). The collection of sub-σ-algebras, {Fi}i∈N, which is termed a
filtration, has a particular structure:

F1 ⊂ F2 ⊂ · · · ⊂ Fn ⊂ Fn+1 ⊂ · · · ⊂ F
and its most important property is that, for any n, the collection of variables
X1,X2, . . . ,Xn must be measurable with respect to Fn. Whilst much more gener-
ality is possible, it is usually sufficient to consider the natural filtration of a process:
that is the one generated by the process itself. Given any collection of random vari-
ables of a common probability space, there exists a smallest σ-algebra with respect
to which those random variables are jointly measurable. The natural filtration is
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the filtration generated by setting each Fn equal to the smallest σ-algebra with
respect to which X1, . . . ,Xn are measurable. Only this filtration will be consid-
ered in the present article. An intuitive interpretation of this filtration, which
provides increasingly fine sub-divisions of the probability space, is that Fn tells us
how much information can be provided by knowledge of the values of the first n

random variables: it tells us which events can be be distinguished given knowledge
of X1, . . . ,Xn.

It is natural when considering a process of this sort to ask questions about
random times: is there anything to stop us defining additional random variables
which have an interpretation as the index which identifies a particular time in the
evolution of the process? In general, some care is required if these random times are
to be useful: if the temporal structure is real, then it is necessary for us to be able
to determine whether the time which has been reached so far is the time of interest,
given some realisation of the process up to that time. Informally, one might require
that {τ = n} can be ascribed a probability of zero or one, given knowledge of the
first n states, for any n. In fact, this is a little stronger than the actual requirement,
but it provides a simple interpretation which suffices for many purposes. Formally,
if τ : Ω → I is a random time, and the event {ω : τ(ω) = n} ∈ Fn for all n,
then τ is known as a stopping time. Note that this condition amounts to requiring
that the event {ω : τ(ω) = n} is independent of all subsequent states of the chain,
Xn+1,Xn+2, . . . conditional upon X1, . . . ,Xn. The most common example of a
stopping time is the hitting time, τA, of a set A:

τA := inf{n : Xn ∈ A},
which corresponds to the first time that the process enters the set A. Note that
the apparently similar

τ ′

A = inf{n : Xn+1 ∈ A}
is not a stopping time (in any degree of generality) as the state of the chain at time
n + 1 is not necessarily known in terms of the first t states.

Note that this distinction is not an artificial or frivolous one. Consider the chain
produced by setting Xn = Xn−1 + Wn where {Wn} are a collection of independent
random variables corresponding to the value of a gambler’s winnings, in dollars,
in the nth independent game which he plays. If A = [10, 000,∞) then τA would
correspond to the event of having won $10,000 and, indeed, it would be possible
to stop when this occurred. Conversely, if A = (−∞,−10, 000], then τ ′

A would
correspond to the last time before that at which $10,000 have been lost. Whilst
many people would like to be able to stop betting immediately before losing money,
it is not possible to know that one will lose the next one of a sequence of independent
games.

Given a stopping time, τ , it is possible to define the stopped process, Xτ
1 ,Xτ

2 , . . . ,
associated with the process X1,X2, . . . , which has the expected definition; writing
m∧ n for the smaller of m and n, define Xτ

n = Xτ∧n. That is, the stopped process
corresponds to the process itself at all times up to the random stopping time, after
which it takes the value it had at that stopping time: it stops. In the case of τA,
for example, the stopped process mirrors the original process until it enters A, and
then retains the value it had upon entry to A for all subsequent times.

3. Markov Chains on Discrete State Spaces

Markov chains which take values in a discrete state space, such as the positive
integers or the set of colours with elements red, green and blue, are relatively easy
to define and to make use of. Note that this class of Markov chains includes those
whose state space is countably infinite: as is often the case with probability little
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additional difficulty is introduced by the transition from finite to countable spaces,
but considerably more care is needed to deal rigorously with uncountable spaces.

In order to specify the distribution a Markov chain on a discrete state space it is
intuitively sufficient to provide an initial distribution, the marginal distribution of
its first element, and the conditional distributions of each element given the previ-
ous one. In order to formalise this notion, and precisely what the Markov property

referred to previously means, it is useful to consider the joint probability distribu-
tion of the first n elements of the Markov chain. Using the definition of conditional
probability, it is possible to write the joint distribution of n random variables,
X1, . . . ,Xn, in the following form, using X1:n to denote the vector (X1, . . . ,Xn):

P (X1:n = x1:n) = P (X1 = x1)

n
∏

i=2

P (Xi = xi|X1:i−1 = x1:i−1) .

The probability that each of the first n elements take particular values can be
decomposed recursively as the probability that all but one of those elements takes
the appropriate value and the conditional probability that the remaining element
takes the specified value given that the other elements take the specified values.

This decomposition could be employed to describe the finite dimensional dis-

tributions (that is, the distribution of the random variables associated with finite
subsets of I) of any stochastic process. In the case of a Markov chain, the distribu-
tion of any element is influenced only by the previous state if the entire history is
known: this is what is meant by the statement that “conditional upon the present,
the future is independent of the past”. This property may be written formally as

P (Xn = xn|X1:n−1 = x1:n−1) = P (Xn = xn|Xn−1 = xn−1) ,

and so for any discrete state space Markov chain:

P (X1:n = x1:n) = P (X1 = x1)

n
∏

i=2

P (Xi = xi|Xi−1 = xi−1) .

As an aside, it is worthwhile to notice that Markov chains encompass a much
broader class of stochastic processes than is immediately apparent. Given any
stochastic process in which for all n > L and x1:n−1,

P (Xn = xn|X1:n−1 = x1:n−1) = P (Xn = xn|Xn−L:n−1 = xn−L:n−1)

it suffices to consider a process Y on the larger space, EL defined as

Yn = (Xn−L+1, . . . ,Xn).

Note that (X1−L, . . . ,X0) can be considered arbitrary without affecting the argu-
ment. Now, it is straightforward to determine that the distribution of Yn+1 depends
only upon Yn. In this way, any stochastic process with a finite memory may be
cast into the form of a Markov chain on an extended space.

The Markov property, as introduced above, is more correctly known as the weak

Markov property, and in the case of Markov chains in which the transition prob-
ability is not explicitly dependent upon the time index, it is normally written in
terms of expectations of integrable test function ξ : Em → R where m may be any
positive integer. The weak Markov property, in fact tells us that the expected value
of the integral of any integrable test function over the next m states of a Markov
chain depends only upon the value of the present state, so, for any n and any x1:n:

E [ξ(Xn+1, . . . ,Xn+m)|X1:n] = E [ξ(Xn+1, . . . ,Xn+m+1)|Xn] .

It is natural to attempt to generalise this by considering random times, rather than
deterministic ones. The strong Markov property requires that, for any stopping
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time τ , the following holds:

E [ξ(Xτ+1, . . . ,Xτ+m)|X1:τ ] = E [ξ(Xτ+1, . . . ,Xτ+m+1)|Xτ ] .

In continuous time settings, these two properties allow us to distinguish between
weak and strong Markov processes (the latter is a strict subset of the former,
because τ = n is a stopping time). However, in the discrete time setting, the weak
and strong Markov properties are equivalent and are possessed by Markov chains
as defined above.

It is conventional to view a Markov chain as describing the path of a dynamic
object, which moves from one state to another as time passes. Many of the physical
systems which can be described by Markov chains have precisely this property –
for example, the motion of a particle in an absorbing medium. The position of
the particle, together with an indication as to whether it has been absorbed or
not may be described by a Markov chain whose states contain coordinates and an
absorbed/not-absorbed flag. It is then natural to think of the initial state as having
a particular distribution, say, µ(x1) = P (X1 = x1) and, furthermore, for there to
be some transition kernel which describes the distribution of moves from a state
xn−1 to a state xn at time n, say, Kn(xn−1, xn) = P (Xn = xn|Xn−1 = xn−1). This
allows us to write the distribution of the first n elements of the chain in the compact
form:

P (X1:n = x1:n) = µ(x1)
n

∏

i=2

Ki(xi−1, xi).

There is nothing preventing these transition kernels from being explicitly depen-
dent upon the time index, for example in the reservoir example presented above,
one might expect both water usage and rainfall to have a substantial seasonal vari-
ation and so the volume of water stored tomorrow would be influenced by the date
as well as the volume stored today. However, it is not surprising that for a great
many systems of interest (and the vast majority of those used in computer simula-
tion) that the transition kernel has no dependence upon the time. Markov chains
which have the same transition kernel at all times are termed time homogeneous

(or sometimes simply homogeneous) and will be the main focus of this article.
In the time homogeneous context, the n-step transition kernels denoted Kn

which have the property that P (Xm+n = xm+n|Xm = xm) = Kn(xm, xm+n) may
be obtained inductively, as

Kn(xm, xm+n) =
∑

xm+1

K(xm, xm+1)K
n−1(xm+1, xm+n)

for any n > 1, whilst K1(xm, xm+1) = K(xm, xm+1).

3.1. A Matrix Representation. The functional notation above is convenient, as
it generalises to Markov chains on state spaces which are not discrete. However,
discrete state space Markov chains exist in abundance in engineering and partic-
ularly in computer science. It is convenient to represent probability distributions
on finite spaces as a row vector of probability values. To define such a vector, µ,
simply set µi = P (X = i) (where X is some random variable distributed according
to µ). It is also possible to define a Markov kernel on this space by setting the
elements of a matrix, K, equal to the probability of moving from a state i to a
state j, i.e.:

Kij = P (Xn = j|Xn−1 = i) .

Whilst this may appear little more than a notational nicety, it has some proper-
ties which make manipulations particularly straightforward, for example, if X1 ∼ µ
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then:

P (X2 = j) =
∑

i

P (X1 = i) P (X2 = j|X1 = i)

=
∑

i

µiKij

= (µK)j ,

where µK denotes the usual vector matrix product and (µK)j denotes the jth

element of the resulting row vector. In fact, it can be shown inductively that
P (Xn = j) =

(

µKn−1
)

j
, where Kn−1 is the usual matrix power of K. Even more

generally, the conditional distributions may be written in terms of the transition

matrix, K:

P (Xn+m = j|Xn = i) = (Km)ij ,

and so a great many calculations can be performed via simple matrix algebra.

3.2. A Graphical Representation. It is common to represent homogeneous, fi-
nite state space Markov chain graphically. A single directed graph with labeled
edges suffices to completely describe the transition matrix of such a Markov chain.
Together with the distribution of the initial state, this completely characterises the
Markov chain. The vertices of the graph correspond to the states and those edges
which exist illustrate the moves which it is possible to make. It is usual to label the
edges with the probability associated with the move which they represent, unless
all possible moves are equally probable.

A simple example, which also shows that the matrix representation can be rather
difficult to interpret consists of the Markov chain obtained on the space {0, 1, . . . , 9}
in which the next state is obtained by taking the number rolled on an unbiased die
and adding it, modulo 10, to the present state unless a 6 is rolled when the state

is 9 in which case the chain retains its present value. This has a straightforward,
but rather cumbersome matrix representation, in which:

K =
1

6

































0 1 1 1 1 1 1 0 0 0
0 0 1 1 1 1 1 1 0 0
0 0 0 1 1 1 1 1 1 0
0 0 0 0 1 1 1 1 1 1
1 0 0 0 0 1 1 1 1 1
1 1 0 0 0 0 1 1 1 1
1 1 1 0 0 0 0 1 1 1
1 1 1 1 0 0 0 0 1 1
1 1 1 1 1 0 0 0 0 1
1 1 1 1 1 0 0 0 0 1
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Figure 1 shows a graphical illustration of the same Markov transition kernel –
transition probabilities are omitted in this case, as they are all equal. Whilst it
may initially seem no simpler to interpret than the matrix, on closer inspection it
becomes apparent that one can easily determine which states it is possible to reach
any selected state from, which states it is possible to reach from it and which states
it is possible to move between in a particular number of moves without performing

any calculations. It is these properties which this representation make it very easy
to interpret even in the case of Markov chains with large state spaces for which the
matrix representation rapidly becomes very difficult to manipulate. Note the loop

in the graph showing the possibility of remaining in state 9 – this is equivalent to
the presence of a nonzero diagonal element in the transition matrix.
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Figure 1. A graphical representation of a Markov chain.

4. Markov Chains on General State Spaces

In general, more subtle measure theoretic constructions are required to define or
study Markov chains on uncountable state spaces – such as the real numbers, or the
points in three dimensional space. In order to deal with fully general state space,
a degree of measure theoretic probability beyond that which can be introduced
in this article is required. Only Markov chains on some subset of d-dimensional,
Euclidean space, R

d and to distributions and transition kernels which admit a
density (for definiteness, with respect to Lebesgue measure – that which attributes
to any interval mass corresponding to its length – over that space) will be considered
here. Kn(x, y) (or K(x, y) in the time homogeneous case) denotes a density with
the property that

P (Xn ∈ A|Xn−1 = xn−1) =

∫

A

Kn(xn−1, y)dy.

This approach has the great advantage that many concepts may be written for
discrete and continuous state space cases in precisely the same manner, with the
understanding that the notation refers to probabilities in the discrete case and
densities in the continuous setting. In order to generalise things it is necessary to
consider Lebesgue integrals with respect to the measures of interest, but essentially,
one can replace equalities of densities with those of integrals over any measurable
set and the definitions and results presented below will continue to hold. For a
rigorous and concise introduction to general state space Markov chains, see [5] and
for a much more detailed exposition [4] is highly recommended.

5. Stationary Distributions and Ergodicity

The ergodic hypothesis of statistical mechanics claims, loosely, that given a ther-
mal system at equilibrium, the long term average occurrence of any given system
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configuration corresponds precisely to the average over an infinite ensemble of iden-
tically prepared systems at the same temperature. One area of great interest in the
analysis of Markov chains is that of establishing conditions under which a (mathe-
matically refined form of) this assertion can be shown to be true: when are averages
obtained by considering those states occupied by a Markov chain over a long period
of its evolution close to those which would be obtained by calculating the average
under some distribution associated with that chain? Throughout this section inte-
grals over the state space are used with the understanding that in the discrete case
these integrals should be replaced by sums. This minimises the amount of duplica-
tion required to deal with both discrete and continuous state spaces, allowing the
significant differences to be emphasised when they arise.

One of the most important properties of homogeneous Markov chains, particu-
larly within the field of simulation, is that they can admit a stationary (or invariant)
distribution. A transition kernel K is π-stationary if:

∫

π(x)K(x, y)dx = π(y).

That is, given a sample X = x from π, the distribution of a random variable, Y ,
drawn from K(x, ·) is the same as that of X, although the two variables are, of
course, not independent. In the discrete case this becomes:

∑

i

π(i)K(i, j) = π(j),

or, more succinctly, in the matrix representation, πK = π. The last of these
reveals a convenient characterisation of the stationary distributions, where they
exist, of a transition kernel: they are the left eigenvectors (or eigenfunctions in the
general state space case) of the transition kernel with an associated eigenvalue of
1. Viewing the transition kernel as an operator on the space of distributions, the
same interpretation is valid in the general state space case.

It is often of interest to simulate evolutions of Markov chains with particular sta-
tionary distributions. Doing so is the basis of Markov chain Monte Carlo methods,
and is beyond the scope of this article. However, a number of theoretical concepts
are required to determine when these distributions exist, when they are unique and
when their existence is enough to ensure that a large enough sample path will have
similar statistical properties to a collection of independent, identically distributed
random variables from the stationary distribution. The remainder of this section is
dedicated to the introduction of such concepts and the presentation of two results
which are of great importance in this area.

One property useful in the construction of Markov chains with a particular in-
variant distributions is that of reversibility. A stochastic process is termed reversible
if the statistical properties of its time-reversal are the same as those of the process
itself. To make this concept more formal, it is useful to cast things in terms of
certain joint probability distributions. A stationary process is reversible, if for any
n,m the following equality holds for all measurable sets An, . . . , An+m:

P (Xn ∈ An, . . . Xn+m ∈ An+m) = P (Xn ∈ An, . . . ,Xn−m ∈ An+m) .

It is simple to verify that, in the context of a Markov chain, this is equivalent to
the detailed balance condition:

P (Xn ∈ An,Xn+1 ∈ An+1) = P (Xn ∈ An+1,Xn+1 ∈ An) .

A Markov chain with kernel K is said to satisfy detailed balance for a distribution
π if:

π(x)K(x, y) = π(y)K(y, x).
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It is straightforward to verify that, if K is π-reversible, then π is a stationary
distribution of K:

∫

π(x)K(x, y)dy =

∫

π(y)K(y, x)dy

π(x) =

∫

π(y)K(y, x)dy.

This is particularly useful, as the detailed balance condition is straightforward to
verify.

Given a Markov chain with a particular stationary distribution, it is important
to be able to determine whether, over a long enough period of time, the chain will
explore all of the space which has positive probability under that distribution. This
leads us to concepts of accessibility, communication structure and irreducibility.

In the discrete case, a state, j, is said to be accessible from another state, i,
written as i → j, if for some n, Kn(i, j) > 0. That is, a state which is accessible
from some starting point, is one which can be reached with positive probability in
some number of steps. If i is accessible from j and j is also accessible from i, then
the two states are said to communicate and this is written as i ↔ j. Given the
Markov chain on the space E = {0, 1, 2} with transition matrix:

K =





1 0 0
0 1

2

1

2

0 1

2

1

2



 ,

it is not difficult to verify that the uniform distribution µ = ( 1

3
, 1

3
, 1

3
) is invariant

under the action of K. However, if X1 = 0 then Xn = 0 for all n: the chain will
never reach either of the other states, whilst started from X1 ∈ {1, 2} the chain will
never reach 0. This chain is reducible: there are disjoint regions of the state space
which do not communicate. Furthermore, it has multiple stationary distributions,
(1, 0, 0) and (0, 1

2
, 1

2
) are both invariant under the action of K. In the discrete

setting, a chain is irreducible if all states communicate: starting from any point in
the state space, any other point may be reached with positive probability in some
finite number of steps.

Whilst these concepts are adequate for dealing with discrete state spaces, a little
more subtlety is required in more general settings: as ever, when dealing with
probability on continuous spaces, the probability associated with individual states
is generally zero and it is necessary to consider integrals over finite regions. The
property which is captured by irreducibility is that, wherever the chain starts from,
there is a positive probability of it reaching anywhere in the space. In order to
generalise this to continuous state spaces it suffices to reduce the strength of this
statement very slightly to: from “most” starting points, the chain has a positive
probability of reaching any region of the space which itself has positive probability.
To make this precise, a Markov chain of stationary distribution π is said to be
π-irreducible if, for all x (except for those lying in a set of exceptional points which
has probability 0 under π), and all sets A with the property that

∫

A
π(x)dx > 0,

∃n :

∫

A

Kn(x, y)dy > 0.

The terms strongly irreducible and strongly π-irreducible are sometimes used when
the irreducibility or π-irreducibility condition, respectively, holds for n = 1. Notice
that any irreducible Markov chain is π-irreducible with respect to any measure π.

These concepts allow us to determine whether a Markov chain has a “joined-up”
state space: whether it is possible to move around the entire space (or at least that
part of the space which has mass under π). However, it tells us nothing about when
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it is possible to reach these points. Consider the difference between the following
two transition matrices on the space {0, 1}, for example:

K =

[

1

2

1

2
1

2

1

2

]

and L =

[

0 1
1 0

]

.

Both admit π = ( 1

2
, 1

2
) as a stationary distribution, and both are irreducible. How-

ever, consider their respective marginal distributions after a number of iterations:

Kn =

[

1

2

1

2
1

2

1

2

]

whilst Ln =























[

0 1
1 0

]

n odd

[

1 0
0 1

]

n even

.

In other words, if µ = (µ1, µ2), then the Markov chain associated with K has
distribution µKn = (1

2
, 1

2
) after n iterations, whilst that associated with L has

distribution (µ2, µ1) after any odd number of iterations and distribution (µ1, µ2)
after any even number. L, then, never forgets its initial conditions and it is periodic.

Whilst this is a rather contrived example, it is clear that such periodic behaviour
is significant and a precise characterisation is needed. This is straightforward in
the case of discrete state space Markov chains. For any state in the space, i, its
period is defined, using gcd to refer to the greatest common divisor (i.e. the largest
common factor) as:

d = gcd {n : Kn(i, i) > 0} .

Thus, in the case of L, above, both states have a period d = 2. In fact, it can easily
be shown, that any pair of states which communicate must have the same period.
Thus, irreducible Markov chains have a single period, 2, in the case of L, above
and 1, in the case of K. Irreducible Markov chains may be said to have a period
themselves, and when this period is 1, they are termed aperiodic.

Again, more subtlety is required in the general case. It is clear that something is
needed to fill the rôle that individual states play in the discrete state space case, and
that individual states are not appropriate in the continuous case. A set of events
which is small enough that it is, in some sense, homogeneous and large enough that
it has positive probability under the stationary distribution is required. A set C

is termed small if there exists some integer n, some probability distribution ν and
some ǫ > 0 such that the following condition holds:

inf
x∈C

Kn(x, y) ≥ ǫν(y).

This tells us that for any point in C, with probability ǫ, the distribution of the
next state the chain enters is independent of where in C it is. In that sense C is
small, and these sets are precisely what is necessary to extend much of the theory
of Markov chains from the discrete state space case to a more general setting. In
particular, it is now possible to extend the notion of period from the discrete state
space setting to a more general one. Note that in the case of irreducible Markov
chains on a discrete state space, the entire state space is small.

A Markov chain has a cycle of length d if there exists a small set C such that
the greatest common divisor of the length of paths from C to a measurable set of
positive probability B is d. If the largest cycle possessed by a Markov chain has
length 1, then that chain is aperiodic. In the case of π-irreducible chains, every
state has a common period (except a set of events of probability 0 under π), and
the above definition is equivalent to the more intuitive (but more difficult to verify)
condition, that there exists a partition of the state space, E, into d disjoint subsets
E1, . . . , Ed with the property that P (Xn+1 6∈ Ej |Xn ∈ Ei) = 0 if j = i + 1 mod d.
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Thus far, concepts which allow us to characterise those Markov chains which can
reach every important part of the space, and which exhibit no periodic structure
have been introduced. Nothing has been said about how often a given region of
the space might be visited. This is a particularly important point: there is a
qualitative difference between chains which have a positive probability of returning
to a set infinitely often, and those which can only visit it finitely many times. Let
ηA denote the number of times that a set A is visited by a Markov chain, that is,
ηA = |{Xn ∈ A : n ∈ N}|. A π-irreducible Markov chain is recurrent if E [ηA] = ∞
for every A with positive probability under π. Thus a recurrent Markov chain is
one with positive probability of visiting any significant (with respect to π) part of
the state space infinitely often: it does not always escape to infinity. A slightly
stronger condition is termed Harris recurrence, it requires that every significant
state is visited infinitely often (rather than this event having positive probability),
i.e. P (ηA = ∞) = 1 for every set A for which

∫

A
π(x)dx > 0. A Markov chain

which is not recurrent is termed transient.
The following example illustrates the problems which can arise if a Markov chain

is π-recurrent but not Harris recurrent. Consider the Markov chain over the positive
integers with the transition kernel defined by:

K(x, y) = x−2δ1(y) + (1 − x−2)δx+1(y),

where for any state, x, δx denotes the probability distribution which places all of
its mass at x. This kernel is clearly δ1-recurrent: if the chain is started from 1, it
stays there deterministically. However, as the sum

∞
∑

k=2

1

k2
< ∞,

the Borel-Cantelli lemma ensures that whenever the chain is started for any x

greater than 1, there is positive probability that the chain will never visit state 1
– the chain is π-recurrent, but it is not Harris recurrent. Although this example is
somewhat contrived, it illustrates an important phenomenon – and one which often
cannot easily be detected in more sophisticated situations. It has been suggested
that Harris recurrence can be interpreted as a guarantee that their exist no such
pathological system trajectories: there are no parts of the space from which the
chain will escape to infinity rather than returning to the support of the stationary
distribution.

It is common to refer to a π-irreducible, aperiodic, recurrent Markov chain as
being ergodic, and an ergodic Markov chain which is also Harris recurrent as being
Harris ergodic. These properties suffice to ensure that the Markov chain will, on
average visit every part of the state space in proportion to its probability under
π, that it exhibits no periodic behaviour in doing so and that it might (or will, in
the Harris case) visit regions of the state space with positive probability infinitely
often. Actually, ergodicity tells us that a Markov chain eventually forgets its initial
conditions – after a sufficiently long time has elapsed, the current state provides
arbitrarily little information about the initial state. There are a number of stronger
forms of ergodicity which provide information about the rate at which the initial
conditions are forgotten, these are covered in great detail by [4]. Intuitively, if a
sequence of random variables forgets where it has been, but has some stationary
distribution then one would expect the distribution of sufficiently widely separated
samples to approximate that of independent samples from that stationary distribu-
tion. This intuition can be made rigorous, and is strong enough to tell us quite a
lot about the distribution of large samples obtained by iterative application of the
Markov kernel and the sense in which approximations of integrals obtained by using
the empirical average obtained by taking samples from the chain might converge to
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their integral under the stationary measure. This section is concluded with two of
the most important results in the theory of Markov chains.

The ergodic theorem provides an analogue of the law of large numbers for in-
dependent random variables: it tells us that under suitable regularity conditions,
the averages obtained from the sample path of a Markov chain will converge to the
expectation under the stationary distribution of the transition kernel. This is the
mathematically refined, rigorously proved form of the ergodic hypothesis alluded
to at the start of this section. There are a great many variants of this theorem, one
particularly simple form is the following: if {Xn} is a Harris ergodic Markov chain
of invariant distribution π, then the following strong law of large numbers holds for
any π-integrable function f : E → R (convergence is with probability one):

lim
n→∞

1

n

n
∑

i=1

f(Xi) →
∫

f(x)π(x)dx.

This is a particular case of [6, p. 241, Theorem 6.63], and a proof of the general
theorem is given there. The same theorem is also presented with proof in [4, p.
433, Theorem 17.3.2].

A central limit theorem also exists, and tells us something about the rate of con-
vergence of averages under the sample path of the Markov chain. Under technical
regularity conditions (see [2] for a summary of various combinations of conditions)
it is possible to obtain a central limit theorem for the ergodic averages of a Harris
recurrent, µ-invariant Markov chain, and a function which has at least two finite
moments, f : E → R (with E [f ] < ∞ and E

[

f2
]

< ∞)1.

lim
n→∞

√
n

[

1

n

n
∑

i=1

f(Xi) −
∫

f(x)π(x)dx

]

d→ N (0, σ2(f)),

σ2(f) = E
[

(f(X1) − f̄)2
]

+ 2

∞
∑

k=2

E
[

(f(X1) − f̄ )(f(Xk) − f̄ )
]

where
d→ denotes convergence in distribution, N (0, σ2) is the normal distribution

of mean 0 and variance σ2(f) and f̄ =
∫

f(x)π(x)dx.
A great many refinements of these results exist in the literature. In particular,

cases in which conditions may be relaxed or stronger results proved have been very
widely studied. It is of particular interest in many cases to obtain quantitative
bounds on the rate of convergence of ergodic averages to the integral under the
stationary distribution. In general, it is very difficult to obtain meaningful bounds
of this sort for systems of real practical interest, although some progress has been
made in recent years.

6. Selected Extensions and Related Areas

It is unsurprising that a field as successful as that of Markov chains has a number
of interesting extensions, and related areas. This section briefly describes two of
these.

So-called adaptive Markov chains have received a significant amount of attention
in the field of Monte Carlo methodology in recent years. These are systems in
which the transition kernel used at each iteration is adjusted depending upon the
entire history of the system or some statistical summary of that history. Whilst
these adaptive systems are attractive from a practical viewpoint, as they allow
for automatic tuning of parameters and promise simpler implementation of Monte

1Depending upon the combination of regularity conditions assumed, it may be necessary to
have a finite moment of order 2 + δ
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Carlo methods in the future, a great deal of care must be taken when analysing
them. It is important to notice that, because the transition kernel depends upon
more than the current state at the time of its application, it does not give rise to a
Markov chain.

Feynman-Kac formulae were first studied in the context of describing physical
particle motion. They describe a sequence of probability distributions obtained
from a collection of Markov transition kernels, Mn, and a collection of potential
functions, Gn. Given a distribution ηn−1 at time n − 1, the system is mutated

according to the transition kernel to produce an updated distribution,

η̂n(xn) =

∫

ηn−1(xn−1)Mn(xn−1, xn)dxn−1,

before weighting the probability of each state / region of the space according to the
value of the potential function:

ηn(xn) =
η̂n(xn)Gn(xn)

∫

η̂n(x)Gn(x)dx
.

There are a number of convenient ways of interpreting such sequences of distribu-
tions. One is that if ηn−1 describes the distribution of a collection of particles at
time n − 1, which have dynamics described by the Markov kernel Mn in an ab-
sorbing medium which is described by the potential function Gn (in the sense that
the smaller the value of Gn at a point, the greater the probability that a particle
at that location is absorbed) then ηn describes the distribution of those particles
which have not been absorbed at time n. These systems have found a great deal of
application in the fields of Monte Carlo methodology, particularly sequential and
population-based methods, and genetic algorithms. The latter gives rise to another
interpretation: the Markov kernel can be seen as describing the mutation under-
gone by individuals within a population, and the potential function Gn(xn) the
fitness of an individual with genetic make-up xn which governs the success of that
individual in a selection step.

Alternatively, one can view the evolution of a Feynman-Kac system as a non-

linear Markov Chain in which the distribution of Xn depends upon both Xn−1 and
its distribution, ηn−1. That is, if Xn−1 ∼ ηn−1 then the distribution of Xn is given
by

ηn(·) =

∫

ηn−1(xn−1)Kn,ηn−1
(xn−1, ·)dxn−1

, where the non-linear Markov Kernel Kn,ηn
is usually defined as the composition

of selection and mutation steps (numerous such kernels may be associated with any
particular Feynman-Kac flow).

An excellent monograph on Feynman-Kac formulae and their mean field approx-
imations has recently been written [1].
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