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1. Introduction

Markov chain Monte Carlo is probably about 50 years old, and has been both developed and

extensively used in physics for the last four decades. However, the most spectacular increase

in its impact and in
uence in statistics and probability has come since the late '80's.

It has now come to be an all-pervading technique in statistical computation, in particular for

Bayesian inference, and especially in complex stochastic systems.

2. Cyclones example: point processes and change points

We will illustrate the ideas of MCMC with a running example: the observations are a point

process of events at times y1; y2; : : : ; yN in an interval [0; L). We suppose the events occur as a
Poisson process | but at a possibly non-uniform rate: say x(t) per unit time, at time t; we wish

to make inference about x(t). We consider a series of models, ultimately allowing an unknown
number of change points, unknown hyperparameters, and a parametric periodic component.
The models and the respective algorithms and inferences will be illustrated by an analysis of

a data set of the times of cyclones hitting the Bay of Bengal; there were 141 cyclones over a
period of 100 years.

Model 1: constant rate. First suppose that x(t) � x for all t. Then the times of the events

are immaterial: we observe N events in a time interval of length L; the obvious estimate of x
is bx = N

L
, the maximum likelihood estimator of x under the assumption that N has a Poisson

distribution, with mean xL.

Model 2: constant rate, the Bayesian way. For a Bayesian approach to this example,
suppose that we have prior information about x (from previous studies, for example). Suppose
we can model this by x � �(�; �):

Then we �nd that a posteriori x has a Gamma distribution with mean (� + N)=(� + L), or

approximately N=L if N and L are large compared with � and �. Thus with a lot of data, the

Bayesian posterior mean is close to the maximum likelihood estimator.
There is no need for MCMC in this model: you can calculate the posterior exactly, and recognise
it as a standard distribution; it only worked like this because we used a conjugate prior.

Model 3: constant rate, with hyperparameter. Suppose you are reluctant to specify

your prior fully: you are happy to say x � �(�; �) and can specify � but not �, and want
to state only � � �(e; f) for �xed e and f (a formulation that makes more sense in our next

formulation, model 4).
Now p(xjN;�; e; f) no longer has an explicit form, but the full conditionals p(xjN;�; �; e; f)

and p(�jx;N; �; e; f) are simple:

xjN;�; �; e; f � �(� +N; � + L)

as before, and

�jx;N; �; e; f � �(e+ �; f + x):



What happens if we generate a sample of (x; �) pairs by alternately drawing x and � from

these distributions?

Figure 1 shows the �rst few moves of this process applied to model 3 on the cyclones data; we

took e = 1 and f = N=L = 1:41. The marginal distribution for x, as accumulated from the

�rst 1000 sweeps of this process is also displayed in Figure 1.
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Figure 1: First few moves of the Gibbs sampler, and marginal distribution for �

from 1000 sweeps, for the cyclones data, model 3.

This is a simple example of aGibbs sampler. The alternating updates of one variable conditioned
on the other induces Markov dependence: the successively sampled pairs form a Markov chain

(on the uncountable state space R+
�R

+), and it is readily shown that the joint posterior is the
(unique) invariant distribution of the chain. Standard theorems imply that the chain converges
to this invariant distribution in several useful senses, so that we can treat the realised values

as a sample from the posterior.

Model 4: constant rate, with change point. Now let us suppose x(t) is a step function
(a suitable model if we postulate one or more change points; the process is completely random,

but the rate switches between levels). Let us take k change points at known times T1; T2; : : : ; Tk
with

x(t) =

8>>><
>>>:
x0 if 0 � t < T1
x1 if T1 � t < T2
� � � � � �

xk if Tk � t < L

;

Suppose that x0; x; : : : ; xk are a priori independently drawn from Gamma distributions, as

before: xj � �(�; �). Then if N0; N1; : : : ; Nk are the numbers of events between adjacent fTjg,

the above method extends to sampling in turn from

xjj � � � � �(� +Nj; � + Tj+1 � Tj); j = 0; 1 : : : ; k and

�j � � � � �(e+ (k + 1)�; f +
kX

i=o

xi);

forming a Markov chain with a (k+ 2)-dimensional state space f(x0; x1; : : : ; xk; �)g. Note that

we write `j � � �' to mean `given all other variables' | including the data.



The hierarchical model using random � allows `borrowing strength' in estimation from all the

data together: the xj are conditionally independent given �, but are unconditionally dependent.

In inference their values will be shrunk together.

3. Beyond the Gibbs sampler { MCMC in general

Having motivated the idea of MCMC by use of the Gibbs sampler in a very basic problem, we

are now in a position to discuss the subject from a rather more general perspective.

The objective is to construct a discrete time Markov chain whose state space is X (the param-

eter space in Bayesian statistics), and whose limiting distribution is a speci�ed target (e.g. a

Bayesian posterior). That is, we want a transition kernel P such that

Pfx(t)
2 Ajx(0)

g ! �(A) as t!1; 8 x(0):

Having constructed such a Markov chain, in the sense of devising a transition kernel with this

limiting property, we then construct it in another sense | we form a realisation of the chain

fx
(1);x(2); : : : ;x(N)

g and treat this as if it was a random sample from �.

A number of standard recipes have been developed (see, for example, Besag, et al., 1995),

including the Gibbs sampler, and the Metropolis and Hastings methods; the latter is very
general, and can even be extended to cases where the parameter space is not of �xed dimension.
We illustrate some of the extensions to our point process model that can also be handled.

Model 5: another hyperparameter. Let us now suppose � is also unknown, with, a
priori, � � �(c; d) for �xed constants c and d. (For the cyclones data, we took c = d = 2.)
This last change means that Gibbs sampling is not enough. In a Markov chain with states

x = (x0; x1; : : : ; xk; �; �), we can update � using a random walk Metropolis move, on the
log(�) scale: the acceptance ratio simpli�es to

min

8<
:1;

 
�(�)

�(�0)

!k+1  
�0

�

!c �
e�d�k+1

Y
xj
��0

��

9=
;

Model 6: unknown change points. If x0; x1; : : : ; xk are unknown, so probably are the times

of the change points T1 < T2 < � � � < Tk. The state vector is now x = (x0; x1; : : : ; xk; T1; T2; : : : ;

Tk; �; �). Let us assume a priori p(T1; T2; : : : ; Tk) / T1(T2 � T1) : : : (Tk � Tk�1)(L� Tk):

The posterior marginal or joint conditional distributions are quite complex, for this or any
prior, so Metropolis-Hastings is needed. The details are a little messy but straightforward. The

acceptance probability for a proposal that T 0

j be drawn uniformly from [Tj�1; Tj+1] is

min

(
1; (likelihood ratio)

(T 0

j � Tj�1)(Tj+1 � T 0

j)

(Tj � Tj�1)(Tj+1 � Tj)

)
:

Model 7: unknown number of change points

What if the number of change points, k, is also unknown? We might place a prior on k, say

Poisson(�):

p(k) = e���
k

k!

and then make Bayesian inference about all unknowns: x = (k; �; �; T1; : : : ; Tk; x0; : : : ; xk).

There are 2k + 4 parameters: the number of things you don't know is one of the things you
don't know!
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Figure 2: Posterior sample of step functions x(t) for model 6 with k = 2, and

posterior for k in model 7, applied to cyclones data.

A variable-dimension Metropolis-Hastings algorithm was applied to this problem, setting the
hyperparameter � = 3, and one aspect of the resulting analysis is displayed in Figure 2.
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R�ESUM�E

Les m�ethode de Monte Carlo par Châines de Markov datent d'environ cinquante ans et ont

�et�e d�evelop�ees et utilis�ees en Physique pendant les quarante derni�eres ann�ees. Cependant leur

impact le plus spectaculaire et leur in
uence en Statistique et Probabilit�e ne remontent qu'�a la

�n des ann�ees 80.
A l'heure actuelle, ces m�ethodes sont omnipr�esentes dans les calculs statistiques, en partic-

ulier dans l'inf�erence bay�esienne et tout sp�ecialement dans l'analyse des syst�emes stochastiques

complexes.


