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PREFACE

This first edition of the Teletraffic Engineering Handbook has been worked out as a joint

venture between the
o [TU — International Telecommunication Union

<http://www.itu.int>, and the:

e [TC — International Teletraffic Congress
<http://www.i-teletraffic.org>.

The handbook covers the basic theory of teletraffic engineering. The mathematical back-
ground required is elementary probability theory. The purpose of the handbook is to enable
engineers to understand ITU-T recommendations on traffic engineering, evaluate tools and
methods, and keep up-to-date with new practices. The book includes the following parts:

e Introduction: Chapter 1 — 2,

Mathematical background: Chapter 3 — 6,
Telecommunication loss models: Chapter 7 — 11,
Data communication delay models: Chapter 12 — 14,

Measurements: Chapter 15.

The purpose of the book is twofold: to serve both as a handbook and as a textbook. Thus
the reader should, for example, be able to study chapters on loss models without studying
the chapters on the mathematical background first.

The handbook is based on many years of experience in teaching the subject at the Tech-
nical University of Denmark and from ITU training courses in developing countries by
the editor Villy B. Iversen. ITU-T Study Group 2 (Working Party 3/2) has reviewed
Recommendations on traffic engineering. Many engineers from the international teletraf-
fic community and students have contributed with ideas to the presentation. Supporting
material, such as software, exercises, advanced material, and case studies, is available at
<http://www.com.dtu.dk/teletraffic>, where comments and ideas will also be appreci-
ated.

The handbook was initiated by the International Teletraffic Congress (ITC), Committee 3
(Developing countries and ITU matters), reviewed and adopted by ITU-D Study Group 2
in 2001. The Telecommunication Development Bureau thanks the International Teletraffic
Congress, all Member States, Sector Members and experts, who contributed to this publica-
tion.

Hamadoun I. Touré
Director
Telecommunication Development Bureau

International Telecommunication Union
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Offered traffic per source

Offered traffic = A,

Carried traffic =Y

Lost traffic

Call congestion

Burstiness

Constant

Traffic congestion = load congestion

Catalan’s number

Slot size in multi-rate traffic

Probability of delay or

Deterministic arrival or service process

Time congestion

Erlang’s B-formula = Erlang’s 1. formula

Erlang’s C—formula = FErlang’s 2. formula
Improvement function

Number of groups

Constant time interval or service time
Palm—Jacobaeus’” formula

Inverse time congestion [ = 1/E

Modified Bessel function of order v

Accessibility = hunting capacity

Maximum number of customers in a queueing system
Number of links in a telecommuncation network or
number of nodes in a queueing network

Mean queue length

Mean queue length when the queue is greater than zero
Random variable for queue length

Mean value (average) = my

i’th (non-central) moment

1’th centrale moment

Mean residual life time

Poisson arrival process

Number of servers (channels)

Number of traffic streams or traffic types

State probabilities, time averages

Probability for state ¢ at time ¢ given state j at time tg
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Cumulated state probabilities P(i) = >2'____p(x)
Relative (non normalised) state probabilities
Cumulated values of ¢(i): Q(i) = > ____ q(x)
Normalisation constant

Reservation parameter (trunk reservation)
Mean response time

Mean service time

Number of traffic sources

Time instant

Random variable for time instant

Load function

Variance

Virtual waiting time

Mean waiting time for delayed customers
Mean waiting time for all customers
Random variable for waiting time

Variable

Random variable

Carried traffic per souce

Carried traffic

Peakedness

Carried traffic per channel

Offered traffic per idle source

Arrival rate for an idle source

Palm’s form factor

Lagrange-multiplicator

7’th cumulant

Arrival rate of a Poisson process

Total arrival rate to a system

Service rate, inverse mean service time

State probabilities, arriving customer mean values
State probabilities, departing customer mean values
Service ratio

Variance, o = standard deviation

Time-out constant or constant time-interval
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Chapter 1

Introduction to Teletraffic Engineering

Teletraffic theory is defined as the application of probability theory to the solution of problems
concerning planning, performance evaluation, operation, and maintenance of telecommuni-
cation systems. More generally, teletraffic theory can be viewed as a discipline of planning
where the tools (stochastic processes, queueing theory and numerical simulation) are taken
from the disciplines of operations research.

The term teletraffic covers all kinds of data communication traffic and telecommunication
traffic. The theory will primarily be illustrated by examples from telephone and data com-
munication systems. The tools developed are, however, independent of the technology and
applicable within other areas such as road traffic, air traffic, manufacturing and assembly
belts, distribution, workshop and storage management, and all kinds of service systems.

The objective of teletraffic theory can be formulated as follows:

to make the traffic measurable in well defined units through mathematical models and
to derive the relationship between grade-of-service and system capacity in such a way
that the theory becomes a tool by which investments can be planned.

The task of teletraffic theory is to design systems as cost effectively as possible with a pre-
defined grade of service when we know the future traffic demand and the capacity of system
elements. Furthermore, it is the task of teletraffic engineering to specify methods for con-
trolling that the actual grade of service is fulfilling the requirements, and also to specify
emergency actions when systems are overloaded or technical faults occur. This requires
methods for forecasting the demand (for instance based on traffic measurements), methods
for calculating the capacity of the systems, and specification of quantitative measures for the
grade of service.

When applying the theory in practice, a series of decision problems concerning both short
term as well as long term arrangements occur.
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Short term decisions include a.o. the determination of the number of circuits in a trunk group,
the number of operators at switching boards, the number of open lanes in the supermarket,
and the allocation of priorities to jobs in a computer system.

Long term decisions include for example decisions concerning the development and extension
of data- and telecommunication networks, the purchase of cable equipment, transmission
systems etc.

The application of the theory in connection with design of new systems can help in comparing
different solutions and thus eliminate non-optimal solutions at an early stage without having
to build up prototypes.

1.1 Modelling of telecommunication systems

For the analysis of a telecommunication system, a model must be set up to describe the
whole (or parts of) the system. This modelling process is fundamental especially for new
applications of the teletraffic theory; it requires knowledge of both the technical system as
well as the mathematical tools and the implementation of the model on a computer. Such a
model contains three main elements (Fig. 1.1):

e the system structure,
e the operational strategy, and

e the statistical properties of the traffic.

MAN Traffic

Stochastic User demands

MACHINE Structure

Deterministic Hardware

Strategy

Software

Figure 1.1: Telecommunication systems are complex man/machine systems. The task of
teletraffic theory is to configure optimal systems from knowledge of user requirements and
habits.
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1.1.1 System structure

This part is technically determined and it is in principle possible to obtain any level of details
in the description, e.g. at component level. Reliability aspects are stochastic as errors occur
at random, and they will be dealt with as traffic with a high priority. The system structure
is given by the physical or logical system which is described in manuals in every detail. In
road traffic systems, roads, traffic signals, roundabouts, etc. make up the structure.

1.1.2 The operational strategy

A given physical system (for instance a roundabout in a road traffic system) can be used
in different ways in order to adapt the traffic system to the demand. In road traffic, it is
implemented with traffic rules and strategies which might be different for the morning and
the evening traffic.

In a computer, this adaption takes place by means of the operation system and by operator
interference. In a telecommunication system, strategies are applied in order to give priority
to call attempts and in order to route the traffic to the destination. In Stored Program
Controlled (SPC) telephone exchanges, the tasks assigned to the central processor are divided
into classes with different priorities. The highest priority is given to accepted calls followed
by new call attempts whereas routine control of equipment has lower priority. The classical
telephone systems used wired logic in order to introduce strategies while in modern systems
it is done by software, enabling more flexible and adaptive strategies.

1.1.3 Statistical properties of traffic

User demands are modelled by statistical properties of the traffic. Only by measurements
on real systems is it possible to validate that the theoretical modelling is in agreement with
reality. This process must necessarily be of an iterative nature (Fig. 1.2). A mathematical
model is build up from a thorough knowledge of the traffic. Properties are then derived from
the model and compared to measured data. If they are not in satisfactory accordance with
each other, a new iteration of the process must take place.

It appears natural to split the description of the traffic properties into stochastic processes for
arrival of call attempts and processes describing service (holding) times. These two processes
are usually assumed to be mutually independent, meaning that the duration of a call is
independent of the time the call arrived. Models also exists for describing the behaviour of
users (subscribers) experiencing blocking, i.e. they are refused service and may make a new
call attempt a little later (repeated call attempts). Fig. 1.3 illustrates the terminology usually
applied in the teletraffic theory.
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[ Observation |

Y
[ Model }‘—

Y
[ Deduction }

!
([ Data |

Y
[ Verification ——

Figure 1.2: Teletraffic theory is an inductive discipline. From observations of real systems we
establish theoretical models, from which we derive parameters, which can be compared with
corresponding observations from the real system. If there is agreement, the model has been
validated. If not, then we have to elaborate the model further. This scientific way of working
is called the research spiral.

| |
-~ Inter-arrival time  ————>,
| |

Busy

—<— Holding time —>f=<—"dle time —>

Idle

A A _—

Arrival time Departure time Time

Figure 1.3: Ilustration of the terminology applied for a traffic process. Notice the difference
between time intervals and instants of time. We use the terms arrival and call synonymously.
The inter-arrival time, respectively the inter-departure time, are the time intervals between
arrivals, respectively departures.
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1.1.4 Models

General requirements to a model are:

1. It must without major difficulty be possible to verify the model and it must be possible
to determine the model parameters from observed data.

2. It must be feasible to apply the model for practical dimensioning.

We are looking for a description of for example the variations observed in the number of
ongoing established calls in a telephone exchange, which vary incessantly due to calls being
established and terminated. Even though common habits of subscribers imply that daily
variations follows a predictable pattern, it is impossible to predict individual call attempts
or duration of individual calls. In the description, it is therefore necessary to use statistical
methods. We say that call attempt events take place according to a stochastic process, and
the inter arrival time between call attempts is described by those probability distributions
which characterise the stochastic process.

An alternative to a mathematical model is a simulation model or a physical model (prototype).
In a computer simulation model it is common to use either collected data directly or to
use artificial data from statistical distributions. It is however, more resource demanding
to work with simulation since the simulation model is not general. Every individual case
must be simulated. The development of a physical prototype is even more time and resource
consuming than a simulation model.

In general mathematical models are therefore preferred but often it is necessary to apply
simulation to develop the mathematical model. Sometimes prototypes are developed for
ultimate testing.

1.2 Conventional telephone systems

This section gives a short description on what happens when a call arrives to a traditional
telephone central. We divide the description into three parts: structure, strategy and traffic.
It is common practice to distinguish between subscriber exchanges (access switches, local
exchanges, LEX) and transit exchanges (TEX) due to the hierarchical structure according
to which most national telephone networks are designed. Subscribers are connected to local
exchanges or to access switches (concentrators), which are connected to local exchanges.
Finally, transit switches are used to interconnect local exchanges or to increase the availability
and reliability.
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1.2.1 System structure

Here we consider a telephone exchange of the crossbar type. Even though this type is being
taken out of service these years, a description of its functionality gives a good illustration on
the tasks which need to be solved in a digital exchange. The equipment in a conventional
telephone exchange consists of voice paths and control paths. (Fig. 1.4).

Subscriber Stage Group Selector

Voice Path E / / Junctor —/>_/>7
oee T Subscriber \\ \

Processor Processor
Control Paths < | Processor
Register

Figure 1.4: Fundamental structure of a switching system.

The voice paths are occupied during the whole duration of the call (in average three minutes)
while the control paths only are occupied during the call establishment phase (in the range
0.1 to 1 s). The number of voice paths is therefore considerable larger than the number of
control paths. The voice path is a connection from a given inlet (subscriber) to a given outlet.
In a space divided system the voice paths consists of passive component (like relays, diodes
or VLSI circuits). In a time division system the voice paths consist of specific time-slots
within a frame. The control paths are responsible for establishing the connection. Normally,
this happens in a number of stages where each stage is performed by a control device: a
microprocessor, or a register.

Tasks of the control device are:

e Identification of the originating subscriber (who wants a connection (inlet)).
e Reception of the digit information (address, outlet).

Search after an idle connection between inlet and outlet.

Establishment of the connection.

Release of the connection (performed sometimes by the voice path itself).
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In addition the charging of the calls must be taken care of. In conventional exchanges the
control path is build up on relays and/or electronic devices and the logical operations are
done by wired logic. Changes in the functions require physical changes and they are difficult
and expensive

In digital exchanges the control devices are processors. The logical functions are carried out
by software, and changes are considerable more easy to implement. The restrictions are far
less constraining, as well as the complexity of the logical operations compared to the wired
logic. Software controlled exchanges are also called SPC-systems (Stored Program Controlled
systems).

1.2.2 User behaviour

We consider a conventional telephone system. When an A-subscriber initiates a call, the
hook is taken off and the wired pair to the subscriber is short-circuited. This triggers a relay
at the exchange. The relay identifies the subscriber and a micro processor in the subscriber
stage choose an idle cord. The subscriber and the cord is connected through a switching
stage. This terminology originates from a the time when a manual operator by means of the
cord was connected to the subscriber. A manual operator corresponds to a register. The cord
has three outlets.

A register is through another switching stage coupled to the cord. Thereby the subscriber is
connected to a register (register selector) via the cord. This phase takes less than one second.

The register sends the dial tone to the subscriber who dials the desired telephone number
of the B-subscriber, which is received and maintained by the register. The duration of this
phase depends on the subscriber.

A microprocessor analyses the digit information and by means of a group selector establishes
a connection through to the desired subscriber. It can be a subscriber at same exchange, at
a neighbour exchange or a remote exchange. It is common to distinguish between exchanges
to which a direct link exists, and exchanges for which this is not the case. In the latter
case a connection must go through an exchange at a higher level in the hierarchy. The digit
information is delivered by means of a code transmitter to the code receiver of the desired
exchange which then transmits the information to the registers of the exchange.

The register has now fulfilled its obligation and is released so it is idle for the service of other
call attempts. The microprocessors work very fast (around 1-10 ms) and independently of
the subscribers. The cord is occupied during the whole duration of the call and takes control
of the call when the register is released. It takes care of different types of signals (busy,
reference etc), pulses for charging, and release of the connection when the call is put down,
ete.

It happens that a call does not pass on as planned. The subscriber may make an error,
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suddenly hang up, etc. Furthermore, the system has a limited capacity. This will be dealt
with in Chap. 2. Call attempts towards a subscriber take place in approximately the same
way. A code receiver at the exchange of the B-subscriber receives the digits and a connection is
set up through the group switching stage and the local switch stage through the B-subscriber
with use of the registers of the receiving exchange.

1.2.3 Operation strategy

The voice path normally works as loss systems while the control path works as delay systems
(Chap. 2).

If there is not both an idle cord as well as an idle register then the subscriber will get no dial
tone no matter how long he/she waits. If there is no idle outlet from the exchange to the
desired B-subscriber a busy tone will be sent to the calling A-subscriber. Independently of
any additional waiting there will not be established any connection.

If a microprocessor (or all microprocessors of a specific type when there are several) is busy,
then the call will wait until the microprocessor becomes idle. Due to the very short holding
time then waiting time will often be so short that the subscribers do not notice anything. If
several subscribers are waiting for the same microprocessor, they will normally get service in
random order independent of the time of arrival.

The way by which control devices of the same type and the cords share the work is often cyclic,
such that they get approximately the same number of call attempts. This is an advantage
since this ensures the same amount of wear and since a subscriber only rarely will get a defect
cord or control path again if the call attempt is repeated.

If a control path is occupied more than a given time, a forced disconnection of the call will
take place. This makes it impossible for a single call to block vital parts of the exchange, e.g.
a register. It is also only possible to generate the ringing tone for a limited duration of time
towards a B-subscriber and thus block this telephone a limited time at each call attempt. An
exchange must be able to operate and function independently of subscriber behaviour.

The cooperation between the different parts takes place in accordance to strictly and well
defined rules, called protocols, which in conventional systems is determined by the wired logic
and in software control systems by software logic.

The digital systems (e.g. ISDN = Integrated Services Digital Network, where the whole
telephone system is digital from subscriber to subscriber (2 B + D = 2 x 64 + 16 Kbps per
subscriber), ISDN = N-ISDN = Narrowband ISDN) of course operates in a way different
from the conventional systems described above. However, the fundamental teletraffic tools
for evaluation are the same in both systems. The same also covers the future broadband
systems B-ISDN which will be based on ATM = Asynchronous Transfer Mode.
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1.3 Communication networks

There exists different kinds of communications networks:, telephone networks, telex networks,
data networks, Internet, etc. Today the telephone network is dominating and physically other
networks will often be integrated in the telephone network. In future digital networks it is
the plan to integrate a large number of services into the same network (ISDN, B-ISDN).

1.3.1 The telephone network

The telephone network has traditionally been build up as a hierarchical system. The individ-
ual subscribers are connected to a subscriber switch or sometimes a local exchange (LEX).
This part of the network is called the access network. The subscriber switch is connected to a
specific main local exchange which again is connected to a transit exchange (TEX) of which
there usually is at least one for each area code. The transit exchanges are normally connected
into a mesh structure. (Fig. 1.5). These connections between the transit exchanges are called
the hierarchical transit network. There exists furthermore connections between two local
exchanges (or subscriber switches) belonging to different transit exchanges (local exchanges)
if the traffic demand is sufficient to justify it.

() Q O (O—CQ)
VRN
74VANNE

Mesh network Star network Ring network

Figure 1.5: There are three basic structures of networks: mesh, star and ring. Mesh networks
are applicable when there are few large exchanges (upper part of the hierarchy, also named
polygon network), whereas star networks are proper when there are many small exchanges
(lower part of the hierarchy). Ring networks are applied for example in fibre optical systems.

A connection between two subscribers in different transit areas will normally pass the follow-
ing exchanges:

USER — LEX — TEX — TEX — LEX — USER

The individual transit trunk groups are based on either analogue or digital transmission
systems, and multiplexing equipment is often used.



10 CHAPTER 1. INTRODUCTION TO TELETRAFFIC ENGINEERING

Twelve analogue channels of 3 kHz each make up one first order bearer frequency system
(frequency multiplex), while 32 digital channels of 64 Kbps each make up a first order PCM-
system of 2.048 Mbps (pulse-code-multiplexing, time multiplexing).

The 64 Kbps are obtained from a sampling of the analogue signal at a rate of 8 kHz and an
amplitude accuracy of 8 bit. Two of the 32 channels in a PCM system are used for signalling
and control.

T T T T
@{E @{E @A@ VAN
Figure 1.6: In a telecommunication network all exchanges are typically arranged in a three-
level hierarchy. Local-exchanges or subscriber-exchanges (L), to which the subscribers are
connected, are connected to main exchanges (T), which again are connected to inter-urban
exchanges (I). An inter-urban area thus makes up a star network. The inter-urban exchanges
are interconnected in a mesh network. In practice the two network structures are mixed, be-

cause direct trunk groups are established between any two exchanges, when there is sufficient
traffic. In the future Danish network there will only be two levels, as T" and I will be merged.

Due to reliability and security there will almost always exist at least two disjoint paths
between any two exchanges and the strategy will be to use the cheapest connections first.
The hierarchy in the Danish digital network is reduced to two levels only. The upper level with
transit exchanges consists of a fully connected meshed network while the local exchanges and
subscriber switches are connected to two or three different transit exchanges due to security
and reliability.

The telephone network is characterised by the fact that before any two subscribers can com-
municate a full two-way (duplex) connection must be created, and the connection exists
during the whole duration of the communication. This property is referred to as the tele-
phone network being connection oriented as distinct from for example the Internet which
is connection-less. Any network applying for example line-switching or circuit—switching is
connection oriented. A packet switching network may be either connection oriented (for ex-
ample virtual connections in ATM) or connection-less. In the discipline of network planning,
the objective is to optimise network structures and traffic routing under the consideration of
traffic demands, service and reliability requirement etc.
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Example 1.3.1: VSAT-networks

VSAT-networks (Maral, 1995 [76]) are for instance used by multi-national organisations for transmis-
sion of speech and data between different divisions of news-broadcasting, in catastrophic situations,
etc. It can be both point-to point connections and point to multi-point connections (distribution
and broadcast). The acronym VSAT stands for Very Small Aperture Terminal (Earth station)
which is an antenna with a diameter of 1.6-1.8 meter. The terminal is cheap and mobile. It is thus
possible to bypass the public telephone network. The signals are transmitted from a VSAT terminal
via a satellite towards another VSAT terminal. The satellite is in a fixed position 35 786 km above
equator and the signals therefore experiences a propagation delay of around 125 ms per hop. The
available bandwidth is typically partitioned into channels of 64 Kbps, and the connections can be
one-way or two-ways.

In the simplest version, all terminals transmit directly to all others, and a full mesh network is the
result. The available bandwidth can either be assigned in advance (fixed assignment) or dynamically
assigned (demand assignment). Dynamical assignment gives better utilisation but requires more
control.

Due to the small parabola (antenna) and an attenuation of typically 200 dB in each direction,
it is practically impossible to avoid transmission error, and error correcting codes and possible
retransmission schemes are used. A more reliable system is obtained by introducing a main terminal
(a hub) with an antenna of 4 to 11 meters in diameter. A communication takes place through the
hub. Then both hops (VSAT — hub and hub — VSAT') become more reliable since the hub is able
to receive the weak signals and amplify them such that the receiving VSAT gets a stronger signal.
The price to be paid is that the propagation delay now is 500 ms. The hub solution also enables
centralised control and monitoring of the system. Since all communication is going through the hub,
the network structure constitutes a star topology. O

1.3.2 Data networks

Data network are sometimes engineered according to the same principle as the telephone
network except that the duration of the connection establishment phase is much shorter.
Another kind of data network is given in the so-called packet distribution network, which
works according to the store-and-forward principle (see Fig. 1.7). The data to be transmitted
are not sent directly from transmitter to receiver in one step but in steps from exchange to
exchange. This may create delays since the exchanges which are computers work as delay
systems (connection-less transmission).

If the packet has a maximum fixed length, the network is denoted packet switching (e.g. X.25
protocol). In X.25 a message is segmented into a number of packets which do not necessarily
follow the same path through the network. The protocol header of the packet contains a
sequence number such that the packets can be arranged in correct order at the receiver.
Furthermore error correction codes are used and the correctness of each packet is checked
at the receiver. If the packet is correct an acknowledgement is sent back to the preceding
node which now can delete its copy of the packet. If the preceding node does not receive
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Figure 1.7: Datagram network: Store- and forward principle for a packet switching data
network.

any acknowledgement within some given time interval a new copy of the packet (or a whole
frame of packets) are retransmitted. Finally, there is a control of the whole message from
transmitter to receiver. In this way a very reliable transmission is obtained. If the whole
message is sent in a single packet, it is denoted message—switching.

Since the exchanges in a data network are computers, it is feasible to apply advanced strategies
for traffic routing.

1.3.3 Local Area Networks (LAN)

Local area networks are a very specific but also very important type of data network where
all users through a computer are attached to the same digital transmission system, e.g. a
coaxial cable. Normally, only one user at a time can use the transmission medium and get
some data transmitted to another user. Since the transmission system has a large capacity
compared to the demand of the individual users, a user experiences the system as if he is
the only user. There exist several types of local area networks. Applying adequate strategies
for the medium access control (MAC) principle, the assignment of capacity in case of many

users competing for transmission is taken care of. There exist two main types of Local
Area Networks: CSMA/CD (Ethernet) and token networks. The CSMA/CD (Carrier Sense
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Multiple Access/Collision Detection) is the one most widely used. All terminals are all the
time listening to the transmission medium and know when it is idle and when it is occupied.
At the same time a terminal can see which packets are addressed to the terminal itself and
therefore needs to be stored. A terminal wanting to transmit a packet transmit it if the
medium is idle. If the medium is occupied the terminal wait a random amount of time before
trying again. Due to the finite propagation speed, it is possible that two (or even more)
terminals starts transmission within such a short time interval so that two or more messages
collide on the medium. This is denoted as a collision. Since all terminals are listening all the
time, they can immediately detect that the transmitted information is different from what
they receive and conclude that a collision has taken place (CD = Collision Detection). The
terminals involved immediately stops transmission and try again a random amount of time
later (back-off).

In local area network of the token type, it is only the terminal presently possessing the token
which can transmit information. The token is rotating between the terminals according to
predefined rules.

Local area networks based on the ATM technique are also in operation. Furthermore, wireless
LANSs are becoming common. The propagation is negligible in local area networks due to
small geographical distance between the users. In for example a satellite data network the
propagation delay is large compared to the length of the messages and in these applications
other strategies than those used in local area networks are used.

1.4 Mobile communication systems

A tremendous expansion is seen these years in mobile communication systems where the
transmission medium is either analogue or digital radio channels (wireless) in contrast to the
convention cable systems. The electro magnetic frequency spectrum is divided into different
bands reserved for specific purposes. For mobile communications a subset of these bands are
reserved. FEach band corresponds to a limited number of radio telephone channels, and it is
here the limited resource is located in mobile communication systems. The optimal utilisation
of this resource is a main issue in the cellular technology. In the following subsection a
representative system is described.

1.4.1 Cellular systems

Structure. When a certain geographical area is to be supplied with mobile telephony, a
suitable number of base stations must be put into operation in the area. A base station is an
antenna with transmission /receiving equipment or a radio link to a mobile telephone exchange
(MTX) which are part of the traditional telephone network. A mobile telephone exchange
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is common to all the base stations in a given traffic area. Radio waves are damped when
they propagate in the atmosphere and a base station is therefore only able to cover a limited
geographical area which is called a cell (not to be confused with ATM—cells). By transmitting
the radio waves at adequate power it is possible to adapt the coverage area such that all
base stations covers exactly the planned traffic area without too much overlapping between
neighbour stations. It is not possible to use the same radio frequency in two neighbour base
stations but in two base stations without a common border the same frequency can be used
thereby allowing the channels to be reused.

Figure 1.8: Cellular mobile communication system. By dividing the frequencies into 3 groups
(A, B and C) they can be reused as shown.

In Fig. 1.8 an example is shown. A certain number of channels per cell corresponding to a
given traffic volume is thereby made available. The size of the cell will depend on the traffic
volume. In densely populated areas as major cities the cells will be small while in sparsely
populated areas the cells will be large.

Channel allocation is a very complex problem. In addition to the restrictions given above,
a number of other also exist. For example, there has to be a certain distance (number of
channels) between two channels on the same base station (neighbour channel restriction) and
to avoid interference also other restrictions exist.

Strategy. In mobile telephone systems a database with information about all the subscriber
has to exist. Any subscriber is either active or passive corresponding to whether the radio
telephone is switched on or off. When the subscriber turns on the phone, it is automatically
assigned to a so-called control channel and an identification of the subscriber takes place.
The control channel is a radio channel used by the base station for control. The remaining
channels are traffic channels

A call request towards a mobile subscriber (B-subscriber) takes place the following way. The
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mobile telephone exchange receives the call from the other subscriber (A-subscriber, fixed or
mobile). If the B-subscriber is passive (handset switched off) the A-subscriber is informed
that the B-subscriber is not available. Is the B-subscriber active, then the number is put out
on all control channels in the traffic area. The B-subscriber recognises his own number and
informs through the control channel in which cell (base station) he is in. If an idle traffic
channel exists it is allocated and the MTX puts up the call.

A call request from a mobile subscriber (A-subscriber) is initiated by the subscriber shifting
from the control channel to a traffic channel where the call is established. The first phase
with reading in the digits and testing the availability of the B-subscriber is in some cases
performed by the control channel (common channel signalling)

A subscriber is able to move freely within his own traffic area. When moving away from the
base station this is detected by the MTX which constantly monitor the signal to noise ratio
and the MTX moves the call to another base station and to another traffic channel with
better quality when this is required. This takes place automatically by cooperation between
the M'TX and the subscriber equipment normally without being noticed by the subscriber.
This operation is called hand over, and of course requires the existence of an idle traffic
channel in the new cell. Since it is improper to interrupt an existing call, hand-over calls are
given higher priorities than new calls. This strategy can be implemented by reserving one or
two idle channels for hand-over calls.

When a subscriber is leaving its traffic area, so-called roaming will take place. The MTX
in the new area is from the identity of the subscriber able to locate the home MTX of the
subscriber. A message to the home MTX is forwarded with information on the new position.
Incoming calls to the subscriber will always go to the home M'TX which will then route the
call to the new MTX. Outgoing calls will be taken care of the usual way.

A widespread digital wireless system is GSM, which can be used throughout Western Eu-
rope. The International Telecommunication Union is working towards a global mobile sys-
tem UPC (Universal Personal Communication), where subscribers can be reached worldwide
(IMT2000).

Paging systems are primitive one-way systems. DECT, Digital European Cord-less Tele-
phone, is a standard for wireless telephones. They can be applied locally in companies,
business centres etc. In the future equipment which can be applied both for DECT and GSM
will come up. Here DECT corresponds to a system with very small cells while GSM is a
system with larger cells.

Satellite communication systems are also being planned in which the satellite station corre-
sponds to a base station. The first such system Iridium, consisted of 66 satellites such that
more than one satellite always were available at any given location within the geographical
range of the system. The satellites have orbits only a few hundred kilometres above the
Earth. Iridium was unsuccessful, but newer systems such as the Inmarsat system is now in
use.
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1.5 ITU recommendations on traffic engineering

The following section is based on ITU-T draft Recommendation E.490.1: Overview of Rec-
ommendations on traffic engineering. See also (Villen, 2002 [99]). The International Telecom-
munication Union (ITU) is an organisation sponsored by the United Nations for promoting
international telecommunications. It has three sectors:

o the Telecommunication Standardisation Sector (ITU-T),
e the Radio communication Sector (ITU-R), and

e the Telecommunication Development Sector (ITU-D).

The primary function of the I'TU-T is to produce international standards for telecommunica-
tions. The standards are known as recommendations. Although the original task of ITU-T
was restricted to facilitate international inter-working, its scope has been extended to cover
national networks, and the ITU-T recommendations are nowadays widely used as de facto
national standards and as references.

The aim of most recommendations is to ensure compatible inter-working of telecommunication
equipment in a multi-vendor and multi-operator environment. But there are also recommen-
dations that advice on best practices for operating networks. Included in this group are the
recommendations on traffic engineering.

The ITU-T is divided into Study Groups. Study Group 2 (SG2) is responsible for Operational
Aspects of Service Provision Networks and Performance. Each Study Group is divided into
Working Parties. Working Party 3 of Study Group 2 (WP 3/2) is responsible for Traffic
Engineering.

1.5.1 Traffic engineering in the I'TU

Although Working Party 3/2 has the overall responsibility for traffic engineering, some rec-
ommendations on traffic engineering or related to it have been (or are being) produced by
other Groups. Study Group 7 deals in the X Series with traffic engineering for data com-
munication networks, Study Group 11 has produced some recommendations (@ Series) on
traffic aspects related to system design of digital switches and signalling, and some recom-
mendations of the I Series, prepared by Study Group 13, deal with traffic aspects related to
network architecture of N- and B-ISDN and IP- based networks. Within Study Group 2,
Working Party 1 is responsible for the recommendations on routing and Working Party 2 for
the Recommendations on network traffic management.

This section will focus on the recommendations produced by Working Party 3/2. They are in
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the E Series (numbered between E.490 and E.799) and constitute the main body of ITU-T
recommendations on traffic engineering.

The Recommendations on traffic engineering can be classified according to the four major
traffic engineering tasks:

e Traffic demand characterisation;
e Grade of Service (GoS) objectives;
e Traffic controls and dimensioning;

e Performance monitoring.

The interrelation between these four tasks is illustrated in Fig. 1. The initial tasks in traffic
engineering are to characterise the traffic demand and to specify the GoS (or performance)
objectives. The results of these two tasks are input for dimensioning network resources and
for establishing appropriate traffic controls. Finally, performance monitoring is required to
check if the GoS objectives have been achieved and is used as a feedback for the overall
process.

Secs. 1.5.2, 1.5.3, 1.5.4, 1.5.5 describe each of the above four tasks. Each section provides an
overall view of the respective task and summarises the related recommendations. Sec. 1.5.6
summarises a few additional Recommendations as their scope do not match the items consid-
ered in the classification Sec. 1.5.7 describes the current work program and Sec. 1.5.8 states
some conclusions.

1.5.2 Traffic demand characterisation

Traffic characterisation is done by means of models that approximate the statistical behaviour
of network traffic in large population of users. Traffic models adopt simplifying assumptions
concerning the complicated traffic processes. Using these models, traffic demand is charac-
terised by a limited set of parameters (mean, variance, index of dispersion of counts, etc).
Traffic modelling basically involves the identification of what simplifying assumptions can be
made and what parameters are relevant from viewpoint of of the impact of traffic demand on
network performance.

Traffic measurements are conducted to validate these models, with modifications being made
when needed. Nevertheless, as the models do not need to be modified often, the purpose
of traffic measurements is usually to estimate the values that the parameters defined in the
traffic models take at each network segment during each time period.

As a complement to traffic modelling and traffic measurements, traffic forecasting is also
required given that, for planning and dimensioning purposes, it is not enough to characterise
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Traffic demand characterisation Grade of Service objectives

QoS
requirements

Traffic Traffic
modelling measurement
End-to—-end
GoS objectives
Traffic
forecasting

Allocation to net-
work components
Traffic controls and dimensioning

Traffic controls

Performance monitoring

Performance monitoring

Figure 1.9: Traffic engineering tasks.

present traffic demand, but it is necessary to forecast traffic demands for the time period
foreseen in the planning process.

Thus the ITU recommendations cover these three aspects of traffic characterisation: traffic
modelling, traffic measurements, and traffic forecasting.

Traffic modelling

Recommendations on traffic modelling are listed in Tab. 1.1. There are no specific recom-
mendations on traffic modelling for the classical circuit-switched telephone network. The
only service provided by this network is telephony given other services, as fax, do not have a
significant impact on the total traffic demand. Every call is based on a single 64 Kbps point-
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to-point bi-directional symmetric connection. Traffic is characterised by call rate and mean
holding time at each origin-destination pair. Poissonian call arrival process (for first-choice
routes) and negative exponential distribution of the call duration are the only assumptions
needed. These assumptions are directly explained in the recommendations on dimensioning.

Rec. Date Title

E.711 | 10/92 | User demand modelling

E.712 | 10/92 | User plane traffic modelling

E.713 | 10/92 | Control plane traffic modelling

E.716 | 10/96 | User demand modelling in Broadband-ISDN
E.760 | 03/00 | Terminal mobility traffic modelling

Table 1.1: Recommendations on traffic modelling.

The problem is much more complex in N- and B-ISDN and in IP-based network. There are
more variety of services, each with different characteristics, different call patterns and different
QoS requirements. Recommendations E.711 and E.716 explain how a call, in N-ISDN
and B-ISDN respectively, must be characterised by a set of connection characteristics (or
call attributes) and by a call pattern.

Some examples of connection characteristics are the following: information transfer mode
(circuit-switched or packet switched), communication configuration (point-to-point, multi-
point or broadcast), transfer rate, symmetry (uni-directional, bi-directional symmetric or
bi-directional asymmetric), QoS requirements, etc.

The call pattern is defined in terms of the sequence of events occurred along the call and of the
times between these events. It is described by a set of traffic variables, which are expressed
as statistical variables, that is, as moments or percentiles of distributions of random variables
indicating number of events or times between events. The traffic variables can be classified
into call-level (or connection-level) and packet-level (or transaction-level, in ATM cell-level)
traffic variables.

The call-level traffic variables are related to events occurring during the call set-up and release
phases. Examples are the mean number of re-attempts in case of non-completion and mean
call-holding time.

The packet-level traffic variables are related to events occurring during the information trans-
fer phase and describe the packet arrival process and the packet length. Recommendation
E.716 describes a number of different approaches for defining packet-level traffic variables.

Once each type of call has been modelled, the user demand is characterised, according to
E.711 and E.716, by the arrival process of calls of each type. Based on the user demand
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characterisation made in Recommendations E.711 and E.716, Recommendations E.712
and E.713 explain how to model the traffic offered to a group of resources in the user plane
and the control plane, respectively.

Finally, Recommendation E.760 deals with the problem of traffic modelling in mobile
networks where not only the traffic demand per user is random but also the number of users
being served at each moment by a base station or by a local exchange. The recommendation
provides methods to estimate traffic demand in the coverage area of each base station and
mobility models to estimate hand-over and location updating rates.

Traffic measurements

Recommendations on traffic measurements are listed in Tab. 1.2. As indicated in the table,
many of them cover both traffic and performance measurements. These recommendations can
be classified into those on general and operational aspects (E.490, E.491, E.502 and E.503),
those on technical aspects (E.500 and E.501) and those specifying measurement requirements
for specific networks (E.502, E.505 and E.745). Recommendation E.743 is related to the last
ones, in particular to Recommendation E.505.

Let us start with the recommendations on general and operational aspects. Recommen-
dation E.490 is an introduction to the series on traffic and performance measurements. It
contains a survey of all these recommendations and explains the use of measurements for short
term (network traffic management actions), medium term (maintenance and reconfiguration)
and long term (network extensions).

Recommendation E.491 points out the usefulness of traffic measurements by destination
for network planning purposes and outlines two complementary approaches to obtain them:
call detailed records and direct measurements.

Recommendations E.504 describes the operational procedures needed to perform mea-
surements: tasks to be made by the operator (for example to define output routing and
scheduling of measured results) and functions to be provided by the system supporting the
man-machine interface.

Once the measurements have been performed, they have to be analysed. Recommendation
E.503 gives an overview of the potential application of the measurements and describes the
operational procedures needed for the analysis.

Let us now describe Recommendations E.500 and E.501 on general technical aspects. Rec-
ommendation E.500 states the principles for traffic intensity measurements. The tradi-
tional concept of busy hour, which was used in telephone networks, cannot be extended to
modern multi-service networks. Thus Recommendation E.500 provides the criteria to choose
the length of the read-out period for each application. These criteria can be summarised as
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Rec. Date Title

E.490* | 06/92 | Traffic measurement and evaluation - general survey

E.491 | 05/97 | Traffic measurement by destination

E.500 | 11/98 | Traffic intensity measurement principles

E.501 | 05/97 | Estimation of traffic offered in the network

E.502* | 02/01 | Traffic measurement requirements for digital telecommunication

exchanges

E.503* | 06/92 | Traffic measurement data analysis

E.504* | 11/88 | Traffic measurement administration

E.505* | 06/92 | Measurements of the performance of common channel signalling

network

E.743 | 04/95 | Traffic measurements for SS No. 7 dimensioning and planning

E.745% 1 03/00 | Cell level measurement requirements for the B-ISDN

Table 1.2: Recommendations on traffic measurements. Recommendations marked * cover
both traffic and performance measurements.

follows:

a)

To be large enough to obtain confident measurements: the average traffic intensity
in a period (¢;,t2) can be considered a random variable with expected value A. The
measured traffic intensity A(tq,t2) is a sample of this random variable. As ty — t;
increases, A(ty,ty) converges to A. Thus the read-out period length ty — ¢; must be
large enough such that A(t;,t,) lies within a narrow confidence interval about A.

An additional reason to choose large read-out periods is that it may not be worth the
effort to dimension resources for very short peak traffic intervals.

To be short enough so that the traffic intensity process is approximately stationary
during the period, i.e. that the actual traffic intensity process can be approximated by
a stationary traffic intensity model. Note that in the case of bursty traffic, if a simple
traffic model (e.g. Poisson) is being used, criterion (b) may lead to an excessively short
read-out period incompatible with criterion (a). In these cases alternative models should
be used to obtain longer read-out period.

Recommendation E.500 also advises on how to obtain the daily peak traffic intensity over
the measured read-out periods. It provides the method to derive the normal load and high

load traffic intensities for each month and, based on them, the yearly representative values
(YRV) for normal and high loads.



22 CHAPTER 1. INTRODUCTION TO TELETRAFFIC ENGINEERING

As offered traffic is required for dimensioning while only carried traffic is obtained from mea-
surements, Recommendation E.501 provides methods to estimate the traffic offered to a
circuit group and the origin-destination traffic demand based on circuit group measurements.
For the traffic offered to a circuit group, the recommendation considers both circuit groups
with only-path arrangement, and circuit groups belonging to a high-usage/final circuit group
arrangement. The repeated call attempts phenomenon is taken into account in the estima-
tion. Although the recommendation only refers to circuit-switched networks with single-rate
connections, some of the methods provided can be extended to other types of networks. Also,
even though the problem may be much more complex in multi-service networks, advanced
exchanges typically provide, in addition to circuit group traffic measurements, other mea-
surements such as the number of total, blocked, completed and successful call attempts per
service and per origin-destination pair, which may help to estimate offered traffic.

The third group of recommendations on measurements includes Recommendations E.502,
E.505 and E.745 which specify traffic and performance measurement requirements in PSTN
and N-ISDN exchanges (E.502), B-ISDN exchanges (E.745) and nodes of SS No. 7 Common
Channel Signalling Networks (E.505).

Finally, Recommendation E.743 is complementary to E.505. It identifies the subset of the
measurements specified in Recommendation E.505 that are useful for SS No. 7 dimensioning
and planning, and explains how to derive the input required for these purposes from the
performed measurements.

Traffic forecasting

Traffic forecasting is necessary both for strategic studies, such as to decide on the introduction
of a new service, and for network planning, that is, for the planning of equipment plant
investments and circuit provisioning. The Recommendations on traffic forecasting are listed
in Tab. 1.3. Although the title of the first two refers to international traffic, they also apply
to the traffic within a country.

Recommendations E.506 and E.507 deal with the forecasting of traditional services for which
there are historical data. Recommendation E.506 gives guidance on the prerequisites
for the forecasting: base data, including not only traffic and call data but also economic,
social and demographic data are of vital importance. As the data series may be incomplete,
strategies are recommended for dealing with missing data. Different forecasting approaches
are presented: direct methods, based on measured traffic in the reference period, versus
composite method based on accounting minutes, and top-down versus bottom-up procedures.

Recommendation E.507 provides an overview of the existing mathematical techniques for
forecasting: curve-fitting models, autoregressive models, autoregressive integrated moving
average (ARIMA) models, state space models with Kalman filtering, regression models and
econometric models. It also describes methods for the evaluation of the forecasting models
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Rec. Date Title

E.506 | 06/92 | Forecasting international traffic
E.507 | 11/88 | Models for forecasting international traffic

E.508 | 10/92 | Forecasting new telecommunication services

Table 1.3: Recommendations on traffic forecasting.

and for the choice of the most appropriate one in each case, depending on the available data,
length of the forecast period, etc.

Recommendation E.508 deals with the forecasting of new telecommunication services for
which there are no historical data. Techniques such as market research, expert opinion and
sectorial econometrics are described. It also advises on how to combine the forecasts obtained
from different techniques, how to test the forecasts and how to adjust them when the service
implementation starts and the first measurements are taken.

1.5.3 Grade of Service objectives

Grade of Service (GoS) is defined in Recommendations E.600 and E.720 as a number of traffic
engineering parameters to provide a measure of adequacy of plant under specified conditions;
these GoS parameters may be expressed as probability of blocking, probability of delay, etc.
Blocking and delay are caused by the fact that the traffic handling capacity of a network or
of a network component is finite and the demand traffic is stochastic by nature.

GoS is the traffic related part of network performance (NP), defined as the ability of a
network or network portion to provide the functions related to communications between users.
Network performance does not only cover GoS (also called trafficability performance), but also
other non-traffic related aspects as dependability, transmission and charging performance.

NP objectives and in particular GoS objectives are derived from Quality of Service (QoS)
requirements, as indicated in Fig. 1.9. QoS is a collective of service performances that deter-
mine the degree of satisfaction of a user of a service. QoS parameters are user oriented and
are described in network independent terms. NP parameters, while being derived from them,
are network oriented, i.e. usable in specifying performance requirements for particular net-
works. Although they ultimately determine the (user observed) QoS, they do not necessarily
describe that quality in a way that is meaningful to users.

QoS requirements determine end-to-end GoS objectives. From the end-to-end objectives,
a partition yields the GoS objectives for each network stage or network component. This
partition depends on the network operator strategy. Thus ITU recommendations only specify
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the partition and allocation of GoS objectives to the different networks that may have to
cooperate to establish a call (for example originating national network, international network
and terminating national network in an international call).

In order to obtain an overview of the network under consideration and to facilitate the par-
titioning of the GoS, ITU Recommendations provide the so-called reference connections. A
reference connection consists of one or more simplified drawings of the path a call (or con-
nection) can take in the network, including appropriate reference points where the interfaces
between entities are defined. In some cases a reference point define an interface between two
operators. Recommendations devoted to provide reference connections are listed in Tab. 1.4.
Recommendation E.701 provides reference connection for N-ISDN networks, Recom-

Rec. Date Title

E.701 | 10/92 | Reference connections for traffic engineering

E.751 | 02/96 | Reference connections for traffic engineering of land mobile networks

E.752 | 10/96 | Reference connections for traffic engineering of maritime and
aeronautical systems

E.755 | 02/96 | Reference connections for UPT traffic performance and GoS

E.651 | 03/00 | Reference connections for traffic engineering of IP access networks

Table 1.4: Recommendations on reference connections.

mendation E.751 for land mobile networks, Recommendation E.752 for maritime and
aeronautical systems, Recommendation E.755 for UPT services, and Recommendation
E.651 for IP-based networks. In the latter, general reference connections are provided for the
end-to-end connections and more detailed ones for the access network in case of HFC' (Hy-
brid Fiber Coax) systems. As an example, Fig. 1.10 (taken from Fig. 6.2 of Recommendation
E.651) presents the reference connection for an IP-to-PSTN/ISDN or PSTN/ISDN-to-IP
call.

We now apply the philosophy explained above for defining GoS objectives, starting with
the elaboration of Recommendation E.720, devoted to N-ISDN. The recommendations on
GoS objectives for PSTN, which are generally older, follow a different philosophy and can
now be considered an exception within the set of GoS recommendations. Let us start this
overview with the new recommendations. They are listed in Tab. 1.5. Recommendations
E.720 and E.721 are devoted to N-ISDN circuit-switched services. Recommendation E.720
provides general guidelines and Recommendation E.721 provides GoS parameters and target
values. The recommended end-to-end GoS parameters are:

e Pre-selection delay

e Post-selection delay
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CPN IP access PSTN/ISDN CPN
network gateway

a) Direct interworking with PSTN/ISDN

CPN IP access IP core PSTN/ISDN CPN
network network gateway

b) Interworking with PSTN/ISDN through IP core network

Figure 1.10: IP-to-PSTN/ISDN or PSTN/ISDN-to—IP reference connection. CPN = Cus-
tomer Premises Network.

e Answer signal delay
e (Call release delay

e Probability of end-to-end blocking

After defining these parameters, Recommendation E.721 provides target values for normal
and high load as defined in Recommendation E.500. For the delay parameters, target values
are given for the mean delay and for the 95 % quantile. For those parameters that are de-
pendent on the length of the connection, different sets of target values are recommended for
local, toll, and international connections. The recommendation provides reference connec-
tions, characterised by a typical range of the number of switching nodes, for the three types
of connections.

Based on the delay related GoS parameters and target values given in Recommendations
E.721, Recommendation E.723 identifies GoS parameters and target values for Signalling
System # 7 networks. The identified parameters are the delays incurred by the initial address
message (IAM) and by the answer message (ANM). Target values consistent with those of
Recommendation E.721 are given for local, toll and international connections. The typical
number of switching nodes of the reference connections provided in Recommendation E.721
are complemented in Recommendation E.723 with typical number of STPs (signal transfer
points).

The target values provided in Recommendation E.721 refer to calls not invoking intelligent
network (IN) services. Recommendation E.724 specifies incremental delays that are al-
lowed when they are invoked. Reference topologies are provided for the most relevant service
classes, such as database query, call redirection, multiple set-up attempts, etc. Target val-
ues of the incremental delay for processing a single IN service are provided for some service
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Rec. Date Title

E.720 | 11/98 | ISDN grade of service concept

E.721 | 05/99 | Network grade of service parameters and target values for circuit-
switched services in the evolving ISDN

E.723 | 06/92 | Grade-of-service parameters for Signalling System No. 7 networks
E.724 | 02/96 | GoS parameters and target GoS objectives for IN Services

E.726 | 03/00 | Network grade of service parameters and target values for B-ISDN
E.728 | 03/98 | Grade of service parameters for B-ISDN signalling

E.770 | 03/93 | Land mobile and fixed network interconnection traffic grade of service
concept

E.771 | 10/96 | Network grade of service parameters and target values for circuit-
switched land mobile services

E.773 | 10/96 | Maritime and aeronautical mobile grade of service concept

E.774 | 10/96 | Network grade of service parameters and target values for maritime
and aeronautical mobile services

E.775 | 02/96 | UPT Grade of service concept
E.776 | 10/96 | Network grade of service parameters for UPT

E.671 | 03/00 | Post selection delay in PSTN/ISDNs using Internet telephony for
a portion of the connection

Table 1.5: Recommendations on GoS objectives (except for PSTN).

classes as well as of the total incremental post-selection delay for processing all IN services.

Recommendation E.726 is the equivalent of Recommendation E.721 for B-ISDN. As B-
ISDN is a packet-switched network, call-level and packet-level (in this case cell-level) GoS
parameters are distinguished. Call-level GoS parameters are analogous to those defined in
Recommendation E.721. The end-to-end cell-level GoS parameters are:

e Cell transfer delay

Cell delay variation

Severely errored cell block ratio

Cell loss ratio

Frame transmission delay

Frame discard ratio
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While the call-level QoS requirements may be similar for all the services (perhaps with
the exception of emergency services), the cell-level QoS requirements may be very different
depending on the type of service: delay requirements for voice and video services are much
more stringent than those for data services. Thus target values for the cell-level must be
service dependent. These target values are left for further study in the current issue while
target values are provided for the call-level GoS parameters for local, toll and international
connections.

Recommendation E.728, for B-ISDN signalling, is based on the delay related call-level
parameters of Recommendation E.726. Recommendation E.728 in its relation to Recommen-

dation E.726, is analogous to the corresponding relationship between Recommendation E.723
and E.721.

In the mobile network series, there are three pairs of recommendations analogous to the
E.720/E.721 pair: Recommendations E.770 and E.771 for land mobile networks, Rec-
ommendations E.773 and E.774 for maritime and aeronautical systems and Recom-
mendations E.775 and E.776 for UPT services. All these are for circuit-switched services.
They analyse the features of the corresponding services that make it necessary to specify less
stringent target values for the GoS parameters than those defined in E.721, and define addi-
tional GoS parameters that are specific for these services. For example, in Recommendations
E.770 and E.771 on land mobile networks, the reasons for less stringent parameters are: the
limitations of the radio interface, the need for the authentication of terminals and of paging of
the called user, and the need for interrogating the home and (in case of roaming) visited net-
work databases to obtain the routing number. An additional GoS parameter in land mobile
networks is the probability of unsuccessful hand-over. Target values are given for fixed-to-
mobile, mobile-to-fixed and mobile-to-mobile calls considering local, toll and international
connections.

The elaboration of recommendations on GoS parameters and target values for IP-based net-
work has just started. Recommendation E.671 only covers an aspect on which was urgent
to give advice. It was to specify target values for the post-selection delay in PSTN/ISDN
networks when a portion of the circuit-switched connection is replaced by IP telephony and
the users are not aware of this fact. Recommendation E.671 states that the end-to-end delay
must in this case be equal to that specified in Recommendation E.721.

Let us finish this overview on GoS recommendations with those devoted to the PSTN. They
are listed in Tab. 1.6. Recommendations E.540, E.541 and E.543 can be considered the
counterpart for PSTN of Recommendation E.721 but organised in a different manner, as
pointed out previously. They are focused on international connections, as was usual in the
old ITU recommendations. Recommendation E.540 specifies the blocking probability of
the international part of an international connection, Recommendation E.541 the end-
to-end blocking probability of an international connection, and Recommendation E.543
the internal loss probability and delays of an international telephone exchange. A revision of
these recommendations is needed to decide if they can be deleted, while extending the scope



28 CHAPTER 1. INTRODUCTION TO TELETRAFFIC ENGINEERING

Rec. Date Title

E.540 | 11/98 | Overall grade of service of the international part of an international
connection

E.541 | 11/88 | Overall grade of service for international connections
(subscriber-to-subscriber)

E.543 | 11/88 | Grades of service in digital international telephone exchanges

E.550 | 03/93 | Grade of service and new performance criteria under failure conditions
in international telephone exchanges

Table 1.6: Recommendations on GoS objectives in the PSTN.

of Recommendation E.721 to cover PSTN.

The target values specified in all of the GoS recommendations assume that the network and
its components are fully operational. On the other hand, the Recommendations on availabil-
ity deal with the intensity of failures and duration of faults of network components, without
considering the fraction of call attempts which is blocked due to the failure. Recommenda-
tion E.550 combines the concepts from the fields of both availability and traffic congestion,
and defines new performance parameters and target values that take into account their joint
effects in a telephone exchange.

1.5.4 Traffic controls and dimensioning

Once the traffic demand has been characterised and the GoS objectives have been established,
traffic engineering provides a cost efficient design and operation of the network while assuring
that the traffic demand is carried and GoS objectives are satisfied.

The inputs of traffic engineering to the design and operation of networks are network di-
mensioning and traffic controls. Network dimensioning assures that the network has enough
resources to support the traffic demand. It includes the dimensioning of the physical net-
work elements and also of the logical network elements, such as the virtual paths of an ATM
network. Traffic controls are also necessary to ensure that the GoS objectives are satisfied.
Among the traffic controls we can distinguish:

e Traffic routing: routing patterns describe the route set choices and route selection
rules for each origin-destination pair. They may be hierarchical or non-hierarchical,
fixed or dynamic. Dynamic methods include time-dependent routing methods,in which
the routing pattern is altered at a fixed time on a pre-planned basis, and state-dependent
or event-dependent routing, in which the network automatically alters the routing pat-
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tern based on present network conditions. Recommendations E.170 to E.177 and E.350
to E.353 all deal with routing, are out of the scope of this section. Nevertheless, ref-
erence to routing is constantly made in the traffic engineering recommendations here
presented. On one hand routing design is based on traffic engineering considerations:
for example, alternative routing schemes are based on cost efficiency considerations, dy-
namic routing methods are based on considerations of robustness under focused overload
or failure conditions or regarding traffic forecast errors. On the other hand, network
dimensioning is done by taking into account routing methods and routing patterns.

e Network traffic management controls: these controls assure that network through-
put is maintained under any overload or failure conditions. Traffic management controls
may be protective or expansive. The protective controls such as code blocking or call
gapping assure that the network does not waste resources in processing calls that will be
unsuccessful or limit the flow of calls requiring many network resources (overflow calls).
The expansive controls re-route the traffic towards those parts of the network that are
not overloaded. Traffic management is usually carried out at traffic management centres
where real-time monitoring of network performance is made through the collection and
display of real-time traffic and performance data. Controls are usually triggered by
an operator on a pre-planned basis (when a special event is foreseen) or in real-time.
In the ITU-T organisation, network traffic management is under the responsibility
of WP 2/2. Recommendations E.410 to E.417, dealing with this subject, are out of
the scope of this section. Nevertheless, reference to traffic management is made in the
traffic engineering recommendations. For example, measurement requirements specified
in the traffic and performance measurement recommendations include the real-time
measurements required for network traffic management.

e Service protection methods: they are call-level traffic controls that control the grade
of service for certain streams of traffic by means of a discriminatory restriction of the
access to circuit groups with little idle capacity. Service protection is used to provide
stability in networks with non-hierarchical routing schemes by restricting overflow traffic
to an alternative route that is shared with first-choice traffic. It is also used to balance
GoS between traffic streams requesting different bandwidth or to give priority service
to one type of traffic.

e Packet-level traffic controls: these controls assure that the packet-level GoS ob-
jectives of the accepted calls are satisfied under any network condition and that a
cost-efficient grade of service differentiation is made between services with different
packet-level QoS requirements.

e Signalling and intelligent network (IN) controls: given that these networks are
the neural system of the whole network, a key objective in the design and operation
of them is to maximise their robustness, that is, their ability to withstand both traffic
overloads and failures of network elements. It is achieved both by means of redundancy
of network elements and by means of a set of congestion and overload controls, as
explained in Recommendations E.744 to be described below.
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Let us classify the recommendations on dimensioning and traffic controls into those devoted to
circuit-switched networks, to packet-switched networks, and to signalling and IN-structured
networks.

Circuit-Switched networks

Recommendations on traffic controls and dimensioning of circuit-switched networks are listed
in Tab. 1.7. These recommendations deal with dimensioning and service protection methods
taking into account traffic routing methods.

Rec. Date Title

E.510 | 10/45 | Determination of the number of circuits in manual operation

E.520 | 11/88 | Number of circuits to be provided in automatic and/or semi-automatic
operation, without overflow facilities

E.521 | 11/88 | Calculation of the number of circuits in a group carrying overflow traffic

E.522 | 11/88 | Number of circuits in a high-usage group

E.524 | 05/99 | Overflow approximations for non-random inputs

E.525 | 06/92 | Designing networks to control grade of service

E.526 | 03/93 | Dimensioning a circuit group with multi-slot bearer services and
no overflow inputs

E.527 | 03/00 | Dimensioning at a circuit group with multi-slot bearer services and
overflow traffic

E.528 | 02/96 | Dimensioning of digital circuit multiplication equipment (DCME)
systems

E.529 | 05/97 | Network dimensioning using end-to-end GoS objectives

E.731 | 10/92 | Methods for dimensioning resources operating in circuit switched mode

Table 1.7: Recommendations on traffic controls and dimensioning of circuit—switched net-
works.

Recommendations E.520, E.521, E.522 and E.524 deal with the dimensioning of circuit groups
or high-usage/final group arrangements carrying single-rate (or single-slot) connections. Ser-
vice protection methods are not considered in these recommendations:

¢ Recommendation E.520 deals with methods for dimensioning of only-path circuit
groups (Fig. 1.11a).

¢ Recommendations E.521 and E.522 provide methods for the dimensioning of simple
alternative routing arrangements as the one shown in Fig. 1.11(b), where there only
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Figure 1.11: Examples of circuit group arrangements.

exist first- and second-choice routes, and where the whole traffic overflowing from a
circuit group is offered to the same circuit group. Recommendation E.521 provides
methods for dimensioning the final group satisfying GoS requirements for given sizes of
the high-usage circuit groups, and Recommendation E.522 advises on how to dimension
high-usage groups to minimise the cost of the whole arrangement.

¢ Recommendation E.524 provides overflows approximations for non-random inputs
which allows for the dimensioning of more complex arrangements (i.e. without the
previous mentioned limitations) as that shown in Fig. 1.11 (c). Several approaches are
described and compared from the point of view of accuracy and complexity.

Recommendation E.525 introduces service protection methods for networks carrying single-
rate connections. It describes the applications and the available methods: split circuit groups,
circuit reservation (also called trunk reservation or, in packet-switched networks, bandwidth
reservation) and virtual circuits. The recommendations provides methods to evaluate the
blocking probability of each traffic stream both for only-path circuit groups and for alterna-
tive routing arrangements, which allow for the dimensioning of the circuit groups and of the
thresholds defining the protection methods. A comparison of the available service protection
methods is made from the point of view of efficiency, overload protection, robustness and
impact of peakedness.

Recommendations E.526 and E.527 deal with the dimensioning of circuit groups carrying
multi-slot (or multi-rate) connections. Service protection methods are considered in both of
them. Recommendation E.526 deals with only-path circuit groups while Recommendation
E.527 deals with alternative routing schemes.

Tab. 1.8 summarises the items considered in each of the Recommendations mentioned above.
Recommendation E.528 deals with the dimensioning of a particular but very important
type of circuit group, where Digital Circuit Multiplication Equipment (DCME) is used to
achieve statistical multiplexing gain in communications via satellite. This is to save circuits by
means of interpolating speech bursts of different channels by taking advantage of the silences
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Recommendation E.520 | E.521 | E.522 | E.b24 | E.525 | E.526 | E.527
Alternative routing No | Yes* | Yes* | Yes Yes No Yes
Service protection No No No No Yes Yes Yes
Multi-slot connections | No No No No No Yes Yes

Table 1.8: Items considered in the circuit group dimensioning. Recommendations E.520 to
E.527. * Only simple arrangements.

existing in a conversation. Dimensioning methods for circuit groups providing integration of
traffic containing voice, facsimile and voice band data are given.

Recommendation E.731 is also devoted to circuit group dimensioning and considers those
special features of N-IDSN that may have an impact on traffic engineering. Apart from multi-
slot connections and service protection methods, the recommendation studies the impact of
attribute negotiation (of attributes affecting either the choice of circuit group or the required
number of circuits), of service reservation (reservation of dedicated resources or of resources
shared with on demand services) and of point-to-multi-point connections.

Recommendation E.529 collects all the dimensioning methods on circuit group or alter-
native routing arrangement described in previous Recommendations, with a view to giv-
ing guidelines for the dimensioning of the whole network using end-to-end GoS objectives.
Dimensioning methods for networks with fixed, time-dependent, state-dependent or event-
dependent traffic routing are described. Principles for the decomposition of the networks into
blocks that may be considered statistically independent are given, and the iterative procedure
required for network optimisation is described.

Packet-Switched networks

Recommendations on traffic controls and dimensioning of packet-switched networks are listed
in Tab. 1.9. They deal with B-ISDN networks using ATM technology, but most of the meth-
ods described apply to other packet-switched networks, as for example IP-based networks,
in which the admission of connections is controlled.

The connection admission control (CAC) establishes a division between the packet-level and
the connection-level. When a user request the establishment of a new connection, the CAC
decides if the connection can be admitted while satisfying packet-level GoS of both new and
existing connections. This decision is usually made by means of allocating resources (typically
bandwidth) to each connection and refusing new request when there are insufficient resources.
Thus:
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Rec. Date Title

E.735 | 05/97 | Framework for traffic control and dimensioning in B-ISDN
E.736 | 05/97 | Methods for cell level traffic control in B-ISDN
E.737 | 05/97 | Dimensioning methods for B-ISDN

Table 1.9: Recommendations on traffic controls and dimensioning of packet-switched net-
works.

e From a packet-level perspective: as the CAC assures that packet-level GoS objectives
are satisfied regardless of the rate of connections offered to the network, it makes the
packet-level independent from the connection-level offered traffic and from the network
dimensioning.

e From a connection-level perspective: as the CAC, in deciding on the acceptance of a
connection, takes into account all the packet-level controls implemented, it summarises
all the packet-level controls in an amount of resources required by a connection. It
makes the connection-level of a packet-switched networks similar to that of a circuit-
switched network: the amount of resources required by a connection, called effective
or equivalent bandwidth (or, in ATM, equivalent cell rate) is equivalent to the number
of slots required by a multi-slot connection in a circuit-switched network. Connection-
level traffic controls and network dimensioning must assure that the connection-level
GoS requirements, typically the specified connection blocking probabilities, are satisfied
taking into account the effective bandwidth that has to be allocated to each connection.

In practice, this separation between packet-and connection-level is not so complete as de-
scribed above: the effective bandwidth of a connection depends on the capacity of the phys-
ical or logical link in which it is carried (apart from the packet-level traffic characteristics of
the connection) while, in its turn, the capacity of the links must be dimensioned by taking
into account the effective bandwidth of the connections. Thus, an iterative process between
connection- and packet-level for network dimensioning is necessary.

Recommendation E.735 is the framework for traffic control and dimensioning in B-ISDN.
It introduces the concepts described above, defines what is a connection and what is a re-
source, and analyses strategies for logical network configuration.

Recommendation E.736 focuses on packet-level. It provides methods for packet-level per-
formance evaluation, proposes possible multiplexing strategies (peak rate allocation, rate
envelope multiplexing and statistical rate sharing) and analyses the implications and appli-
cations of each of them. Based on this analysis, the recommendation provides methods for
packet-level controls. Emphasis is placed on methods for Connection Admission Control and
for the integration (or segregation) of services with different QoS requirements either by us-
ing dedicated resources or by sharing the same resources and implementing loss and/or delay
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priorities. It also addresses adaptive resource management techniques to control the flow of
packets of services with non-stringent delay requirements.

Recommendation E.737 provides methods for circuit group and network dimensioning and
addresses connection-level traffic controls, in particular service protection methods. Traffic
routing methods are also taken into account. As the effective bandwidth of a connection
is modelled as a number of slots of a multi-slot connection, this recommendation is not
very different from those on circuit-switched network dimensioning. Nevertheless the rec-
ommendation deals with some features that are particular of packet-switched networks: the
above mentioned iteration between effective bandwidth and network dimensioning; the re-
quired bandwidth discretization into multiples of a bandwidth quantisation unit, given that
the multi-slot models only deal with integer number of slots; and the implications on the
dimensioning of services with different packet-level QoS requirements.

Signalling and IN-Structured Networks

The recommendations on traffic controls and dimensioning of signalling networks and intel-
ligent networks (IN) are listed in Tab. 1.10. Recommendations E.733 and E.734 deal with
dimensioning and Recommendation E.744 with traffic controls.

Rec. Date Title

E.733 | 11/98 | Methods for dimensioning resources in Signalling System No. 7 networks

E.734 | 10/96 | Methods for allocating and dimensioning Intelligent Network (IN)
resources

E.744 | 10/96 | Traffic and congestion control requirements for SS No. 7 and
IN-structured networks

Table 1.10: Recommendations on traffic controls and dimensioning of signalling and IN—
structured networks.

Recommendation E.733 provides a methodology for the planning and dimensioning of
signalling system No. 7 networks. The methodology takes into account the fact that the
efficiency of the signalling links should not be the primary consideration, but the performance
of the network under failure and traffic overload has greater importance. The recommendation
describes the reference traffic and reference period that, in agreement with Recommendations
E.492 and E.500, must be used to dimension the number of signalling links and to ensure
that the capacity of network switching elements is not exceeded. It describes the factors
for determining a maximum design link utilisation, g,,4., Which ensure that the end-to-end
delay objectives described in Recommendation E.723 are met. Delays incurred when, due
to failures, the link load is 2 g,,4, are also taken into account for determining 0,,q.. Initial
values for g,,., being used are described and methods are given for determining the number
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of signalling links and the switching capacity required.

Recommendation E.734 deals with resource allocation and dimensioning methods for In-
telligent Networks. It discusses the new traffic engineering factors to be considered: services
with reference period out of the normal working hours, mass calling situations produced by
some services, fast implementation of new services with uncertain forecast. The last factor
makes it necessary to have the allocation and dimensioning procedures flexible enough to
provide, as quickly as possible, the resources required as new services are implemented or the
user demand changes. The recommendation provides criteria for resource allocation, both for
the location of the IN—specific elements and for the partitioning of the Intelligent Network
functionality (such as service logic) among these elements. It also provides methods for the
dimensioning of the IN nodes and of the supporting signalling subnetwork, and discusses the
impact on the circuit-switched network dimensioning.

Traffic and congestion control procedures for SS. No. 7 and IN-structured networks are spec-
ified in the Q and E.410-series Recommendations. These procedures generally leave key
parameter values to be specified as part of the implementation. Given that robustness is a
key requirement of signalling and IN-structured networks, a proper implementation of these
controls is essential.

Recommendation E.744 provides guidelines for this implementation, indicating how the
control parameters should be chosen in different types of networks. The recommendation also
advises on requirements to be placed on signalling nodes and IN nodes on the needs for node-
level overload controls and on how such controls must interrelate with network-level controls.
Finally, the recommendation states basic principles to keep different systems and controls
harmonised in order to allow for various vendor products and network implementations to be
interconnected with a high confidence the control procedures will work properly.

1.5.5 Performance monitoring

Once the network is operational, continuous monitoring of the GoS is required. Although
the network is correctly dimensioned, there are overload and failure situations not considered
in the dimensioning where short term (minutes, hours) network traffic management actions
have to be taken. In situations considered in the dimensioning, traffic forecast errors or
approximations made in the dimensioning models may lead to a GoS different from the one
expected. GoS monitoring is needed to detect these problems and to produce feedback for
traffic characterisation and network design. Depending on the problems detected, network
reconfigurations, changes of the routing patterns or adjustment of traffic control parameters
can be made in medium term (weeks, months). The urgency of a long term planning of
network extensions may also be assessed.

Recommendations E.490, E.491, E.502, E.503, E.504, E.505 and E.745, covering both traffic
and performance measurements, have been described in Sec. 1.5.2, cover both traffic and
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performance measurements. We consider in this section two other Recommendations, E.492
and E.493, listed in Tab. 1.11 which are only related to performance measurements.

Rec. Date Title

E.492 | 02/96 | Traffic reference period
E.493 | 02/96 | Grade of Service (GoS) monitoring

Table 1.11: Recommendations on performance measurements (for recommendations covering
both traffic and performance measurements, see Tab. 1.2).

Recommendation E.492 provides the definition of traffic reference periods for the purposes
of collecting measurements for monitoring Grade-of-Service for networks and network com-
ponents. This Recommendation is closely related to Recommendation E.500, which defines
read-out periods for traffic intensity measurements required for network dimensioning. These
read-out periods have to be consistent with those used for performance monitoring once the
network is operative. Recommendation E.492 also defines the normal and high load periods
that are representative of each month. The purpose of these definitions, also consistent with
those of Recommendation E.500, is to identify which day and read-out period to use for
comparing the monitored GoS to the GoS target values specified for normal and high load.

Recommendation E.493 addresses how to perform end-to-end GoS monitoring, taking
into account practical limitations. Measurement of blocking or mishandling probabilities is
straightforward. However, as direct measurements of end-to-end delays are not feasible in a
continuous monitoring, the Recommendation proposes methods to approximate end-to-end
delays (mean and 95 % quantile) by means of local measurements autonomously taken in
each network element. The proposed methods do not require coordination between network
elements to take the measurements. The Recommendation also explains how to apply the
proposed methods to the monitoring of each of the connection-level GoS parameters defined
in the recommendations on GoS objectives.

1.5.6 Other recommendations

There are a few other Recommendations for which their scope does not match any of the
items considered in the classification made here. They are listed in Tab. 1.12.

Recommendations E.600 provides a list of traffic engineering terms and definitions used
throughout the whole set of traffic engineering Recommendations.

Recommendations E.700 & E.750 are introductory Recommendations to the E.700/749
Series Recommendations on traffic engineering for N- and B-ISDN, and to the E.750/799
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Rec. Date Title

E.523 | 11/88 | Standard traffic profiles for international traffic streams
E.600 | 03/93 | Terms and definitions of traffic engineering
E.700 | 10/92 | Framework of the E.700-Series Recommendations

E.750 | 03/00 | Introduction to the E.750-Series of Recommendations on traffic
engineering aspects of networks supporting mobile and UPT services

Table 1.12: Recommendations not matching under any of the items considered in the classi-
fication made here.

Series Recommendations on traffic engineering for mobile networks, respectively.

Recommendation E.523 provides standardised 24-hour traffic profiles for traffic streams
between countries in different relative time locations. This measurement-based information
may be useful for those countries where no measurements are available. The profiles refer
to telephone traffic and must not be used for data traffic for which the profiles may be very
different.

1.5.7 Work program for the Study Period 2001-2004

The work in ITU is planned for periods of four years, called study periods. In the past,
recommendations developed along a study period were approved and published at the end
of the period. At present, working methods are more dynamic: recommendations can be
approved and published at any moment, work program prepared for a study period can be
updated along the period according to needs.

Work program for the 2001-2004 period makes emphasis on traffic engineering for Personal
Communications, IP Networks and Signalling. Three Questions (i.e. subjects for study) have
been defined, one for each topic. The titles of the Questions are:

e Traffic engineering for Personal Communications;

e Traffic engineering for SS7- and IP-based Signalling Networks;

e Traffic engineering for Networks Supporting IP Services.

An Expert Group has been formed for each Question. The Expert Group, co-ordinated by a
rapporteur, is in charge of elaborating the recommendations related to the Question.
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1.5.8 Conclusions

An overview of the ITU traffic engineering recommendations has been given. A high amount
of work of worldwide specialists on traffic engineering is behind this extensive set of recom-
mendations. The whole set intends to be a valuable help for engineers in charge of designing
and operating telecommunication networks. Nevertheless, the set of traffic engineering rec-
ommendation can never be a complete set: new technologies, new services, new teletraffic
methods are continuously appearing and need to be incorporated to the recommendations.

Teletraffic researchers are encouraged to contribute to the preparation of new recommenda-
tions and to the revision of the old ones. The I'TU recommendations can be seen as a bridge
between the teletraffic research activity and the daily traffic engineering practice carried out
by the operators. An innovative method has a greater chance to be used in practice if it
appears in an ITU recommendation. It is thus worth for the researcher to contribute to the
ITU in order to extend his ideas. The daily operational practice will also obtain benefit
from this contribution. Current working methods as for instance the extensive use of E-mail,
facilitate informal cooperation of any researcher with the ITU work.



Chapter 2

Traffic concepts and grade of service

The costs of a telephone system can be divided into costs which are dependent upon the
number of subscribers and costs that are dependent upon the amount of traffic in the system.

The goal when planning a telecommunication system is to adjust the amount of equipment
so that variations in the subscriber demand for calls can be satisfied without noticeable
inconvenience while the costs of the installations are as small as possible. The equipment
must be used as efficiently as possible.

Teletraffic engineering deals with optimisation of the structure of the network and adjustment
of the amount of equipment that depends upon the amount of traffic.

In the following some fundamental concepts are introduced and some examples are given to
show how the traffic behaves in real systems. All examples are from the telecommunication
area.

2.1 Concept of traffic and traffic unit [erlang]

In teletraffic theory we usually use the word traffic to denote the traffic intensity, i.e. traffic
per time unit. The term traffic comes from Italian and means business. According to ITU-T
(1993 [34]) we have the following definition:

Definition of Traffic Intensity: The instantaneous traffic intensity in a pool of resources
is the number of busy resources at a given instant of time.

The pool of resources may be a group of servers, e.g. trunk lines. The statistical moments
of the traffic intensity may be calculated for a given period of time T'. For the mean traffic
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intensity we get:
1 T
Y(T)==- / n(t) dt. (2.1)
T Jo

where n(t) denotes the number of occupied devices at the time ¢.

Carried traffic Y = A.: This is called the traffic carried by the group of servers during the
time interval 7' (Fig. 2.1). In applications, the term traffic intensity usually has the meaning
of average traffic intensity.

Number of busy channels
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Figure 2.1: The carried traffic (intensity) (= number of busy devices) as a function n(t) of
time. For dimensioning purposes we use the average traffic intensity during a period of time
T (mean).

The ITU-T recommendation also says that the unit usually used for traffic intensity is erlang
(symbol E). This name was given to the traffic unit in 1946 by CCIF (predecessor to CCITT
and to ITU-T), in honour of the Danish mathematician A. K. Erlang (1878-1929), who was
the founder of traffic theory in telephony. The unit is dimensionless. The total traffic carried
in a time period T' is a traffic volume, and it is measured in erlang-hours (Eh). It is equal
to the sum of all holding times inside the time period. According to the ISO standards
the standardised unit should be erlang-seconds, but usually erlang-hours has a more natural
order of size).

The carried traffic can never exceed the number of channels (lines). A channel can at most
carry one erlang. The income is often proportional to the carried traffic.

Offered traffic A: In theoretical models the concept offered traffic is used; this is the traffic
which would be carried if no calls were rejected due to lack of capacity, i.e. if the number of
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servers were unlimited. The offered traffic is a theoretical value and it cannot be measured.
It is only possible to estimate the offered traffic from the carried traffic.

Theoretically we operate with two parameters:
1. call intensity A, which is the mean number of calls offered per time unit, and

2. mean service time s.

The offered traffic is equal to:
A=MX-s. (2.2)

From this equation it is seen that the unit of traffic has no dimension. This definition assumes
according to the above definition that there is an unlimited number of servers. If we use the
definition for a system with limited capacity we get a definition which depends upon the
capacity of the system. The latter definition has been used for many years, for example in
the Engset case (Chap. 8), but it is not appropriate, because the offered traffic should be
independent of the system.

Lost or Rejected traffic A,: The difference between offered traffic and carried traffic is
equal to the rejected traffic. The value of this parameter can be reduced by increasing the
capacity of the system.

Example 2.1.1: Definition of traffic

If the call intensity is 5 calls per minute, and the mean service time is 3 minutes then the offered
traffic is equal to 15 erlang. The offered traffic-volume during a working day of 8 hours is then 120
erlang-hours. O

Example 2.1.2: Traffic units
Earlier other units of traffic have been used. The most common which may still be seen are:

SM = Speech-minutes
1 SM= 1/60 Eh.
CCS = Hundred call seconds:
1 CCS =1/36 Eh.
This unit is based on a mean holding time of 100 seconds
and can still be found, e.g. in USA.
EBHC = Equated busy hour calls:
1 EBHC = 1/30 Eh.
This unit is based on a mean holding time of 120 seconds.

We will soon realize, that erlang is the natural unit for traffic intensity because this unit is inde-
pendent of the time unit chosen. O
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The offered traffic is a theoretical parameter used in the theoretical dimensioning formulae.
However, the only measurable parameter in reality is the carried traffic, which often depends
upon the actual system.

In data transmissions systems we do not talk about service times but about transmission
needs. A job can for example be a data packet of s units (e.g. bits or bytes). The capacity of
the system ¢, the data signalling speed, is measured in units per second (e.g. bits/second).
Then the service time for such a job, i.e. transmission time, is s/¢ time units (e.g. seconds),
i.e. depending on . If on the average X\ jobs are served per time unit, then the utilisation p
of the system is:
A-s
o
The observed utilisation will always be inside the interval 0 < p < 1, as it is the carried
traffic.

0= (2.3)

Multi-rate traffic: If we have calls occupying more than one channel, and calls of type ¢
occupy d; channels, then the offered traffic expressed in number of busy channels becomes:

N
1=0

where N is number of traffic types, and A; and s; denotes the arrival rate and mean holding
time of type 1.

Potential traffic: In planning and demand models we use the term potential traffic, which
would equal the offered traffic if there were no limitations in the use of the phone because of
economics or availability (always a free phone available).

2.2 Traffic variations and the concept busy hour

The teletraffic varies according to the activity in the society. The traffic is generated by single
sources, subscribers, who normally make telephone calls independently of each other.

A investigation of the traffic variations shows that it is partly of a stochastic nature partly
of a deterministic nature. Fig. 2.2 shows the variation in the number of calls on a Monday
morning. By comparing several days we can recognise a deterministic curve with superposed
stochastic variations.

During a 24 hours period the traffic typically looks as shown in Fig. 2.3. The first peak is
caused by business subscribers at the beginning of the working hours in the morning, possibly
calls postponed from the day before. Around 12 o’clock it is lunch, and in the afternoon there
is a certain activity again.
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Figure 2.2: Number of calls per minute to a switching centre a Monday morning. The regular
24-hour variations are superposed by stochastic variations. (Iversen, 1973 [35]).
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Figure 2.3: The mean number of calls per minute to a switching centre taken as an average
for periods of 15 minutes during 10 working days (Monday — Friday). At the time of the
measurements there were no reduced rates outside working hours (Iversen, 1973 [37]).
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Around 19 o’clock there is a new peak caused by private calls and a possible reduction in
rates after 19.30. The mutual size of the peaks depends among other thing upon whether
the exchange is located in a typical residential area or in a business area. They also depend
upon which type of traffic we look at. If we consider the traffic between Europa and for USA
most calls takes place in the late afternoon because of the time difference.

The variations can further be split up into variation in call intensity and variation in service
time. Fig. 2.4 shows variations in the mean service time for occupation times of trunk lines
during 24 hours. During business hours it is constant, just below 3 minutes. In the evening
it is more than 4 minutes and during the night very small, about one minute.

Busy Hour: The highest traffic does not occur at same time every day. We define the
concept time consistent busy hour, TCBH as those 60 minutes (determined with an accuracy
of 15 minutes) which during a long period on the average has the highest traffic.

It may therefore some days happen that the traffic during the busiest hour is larger than the
time consistent busy hour, but on the average over several days, the busy hour traffic will be
the largest.

We also distinguish between busy hour for the total telecommunication system, an exchange,
and for a single group of servers, e.g. a trunk group. Certain trunk groups may have a busy
hour outside the busy hour for the exchange (for example trunk groups for calls to the USA).

In practice, for measurements of traffic, dimensioning, and other aspects it is an advantage
to have a predetermined well-defined busy hour.

The deterministic variations in teletraffic can be divided into:

e 24 hours variation (Fig. 2.3 and 2.4).

e Weekly variations (Fig. 2.5). Normally the highest traffic is on Monday, then Friday,
Tuesday, Wednesday and Thursday. Saturday and especially Sunday has a very low
traffic level. A good rule of thumb is that the 24 hour traffic is equal to 8 times the
busy hour traffic (Fig. 2.5), i.e. only one third of capacity in the telephone system is
utilised. This is the reason for the reduced rates outside the busy hours.

e Variation during a year. There is a high traffic in the beginning of a month, after a
festival season, and after quarterly period begins. If Easter is around the 1st of April
then we observe a very high traffic just after the holidays.

e The traffic increases year by year due to the development of technology and economics

in the society.

Above we have considered traditional voice traffic. Other services and traffic types have other
patterns of variation. In Fig. 2.6 we show the variation in the number of calls per 15 minutes
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Figure 2.4: Mean holding time for trunk lines as a function of time of day. (Iversen, 1973 [35]).
The measurements exclude local calls.

to a modem pool for dial-up Internet calls. The mean holding time as a function of the time
of day is shown in Fig. 2.7.

Cellular mobile telephony has a different profile with maximum late in the afternoon, and the
mean holding time is shorter than for wire-line calls. By integrating various forms of traffic
in the same network we may therefore obtain a higher utilisation of the resources.

2.3 The blocking concept

The telephone system is not dimensioned so that all subscribers can be connected at the
same time. Several subscribers are sharing the expensive equipment of the exchanges. The
concentration takes place from the subscriber toward the exchange. The equipment which is
separate for each subscriber should be made as cheap as possible.

In general we expect that about 5-8 % of the subscribers should be able to make calls at the
same time in busy hour (each phone is used 10-16 % of the time). For international calls
less than 1 % of the subscribers are making calls simultaneously. Thus we exploit statistical
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Figure 2.5: Number of calls per 24 hours to a switching centre (left scale). The number
of calls during busy hour is shown for comparison at the right scale. We notice that the
24-hour traffic is approximately 8 times the busy hour traffic. This factor is called the traffic
concentration (Iversen, 1973 [35]).

multiplexing advantages. Every subscriber should feel that he has unrestricted access to all
resources of the telecommunication system even if he is sharing it with many others.

The amount of equipment is limited for economical reasons and it is therefore possible that
a subscriber cannot establish a call, but has to wait or be blocked (the subscriber for ex-
ample gets busy tone and has to make a new call attempt). Both are inconvenient to the
subscriber. Depending on how the system operates we distinguish between loss—systems (e.g.
trunk groups) and waiting time systems (e.g. common control units and computer systems)
or a mixture of these if the number of waiting positions (buffer) is limited.

The inconvenience in loss—systems due to insufficient equipment can be expressed in three
ways (network performance measures):

Call congestion B:  The fraction of all call attempts which observes all servers busy
(the user-perceived quality-of-service, the nuisance the subscriber
experiences).
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Figure 2.6: Number of calls per 15 minutes to a modem pool of Tele Danmark Internet.
Tuesday 1999.01.19.

Time congestion E/:  The fraction of time when all servers are busy. Time conges-
tion can for example be measured at the exchange (= virtual
congestion).

Traffic congestion C': The fraction of the offered traffic that is not carried, possibly
despite several attempts.

These quantitative measures can forexample be used to establish dimensioning standards for
trunk groups.

At small congestion values it is possible with a good approximation to handle congestion in
the different part of the system as mutually independent. The congestion for a certain route
is then approximately equal to the sum of the congestion in each link of the route. During
the busy hour we normally allow a congestion of a few percentage between two subscribers.

The systems cannot manage every situation without inconvenience for the subscribers. The
purpose of teletraffic theory is to find relations between quality of service and cost of equip-
ment. The existing equipment should be able to work at maximum capacity during abnormal
traffic situations (e.g. a burst of phone calls), i.e. the equipment should keep working and
make useful connections.
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Figure 2.7: Mean holding time in seconds as a function of time of day for calls arriving inside
the period considered. Tele Danmark Internet. Tuesday 1999.01.19.

The inconvenience in delay—systems (queueing systems) is measured as a waiting time. Not
only the mean waiting time is of interest but also the distribution of the waiting time. It
could be that a small delay do not mean any inconvenience, so there may not be a linear
relation between inconvenience and waiting time.

In telephone systems we often define an upper limit for the acceptable waiting time. If this
limit exceeded then a time-out of the connection will take place (enforced disconnection).

2.4 Traffic generation and subscribers reaction

If Subscriber A want to speak to Subscriber B this will either result in a successful call
or a failed call-attempt. In the latter case A may repeat the call attempt later and thus
initiate a series of several call-attempts which fail. Call statistics typically looks as shown in
Table 2.1, where we have grouped the errors into a few typical classes. We notice that the
only error which can be directly influenced by the operator is technical errors and blocking,
and this class usually is small, a few percentages during the Busy Hour. Furthermore, we
notice that the number of calls which experience B-busy depends on the number of A-errors
and technical errors & blocking. Therefore, the statistics in Table 2.1 are misleading. To
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Outcome [-country | D—country
A-error: 15 % 20 %
Blocking and technical errors: 5% 35 %
B no answer before A hangs up: 10 % 5%
B-busy: 10 % 20 %
B-answer = conversation: 60 % 20 %
No conversation: 40 % 80 %

Table 2.1: Typical outcome of a large number of call attempts during Busy Hour for Indus-

trialised countries, respectively Developing countries.
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Figure 2.8: When calculating the probabilities of events for a certain number of call attempts
we have to consider the conditional probabilities.

obtain the relevant probabilities, which are shown in Fig. 2.8, we shall only consider the calls
arriving at the considered stage when calculating probabilities. Applying the notation in
Fig. 2.8 we find the following probabilities for a call attempts (assuming independence):

p{A-error} = p. (2.5)

p{Congestion & tech. errors} = (1—p,) - ps (2.6)
p{Bno answer} = (1—po)-(1—py)-pn (2.7)

p{B-busy} = (1—pc)-(1—ps) p (2.8)

p{B-answer} = (1—p.)-(1—ps) Ppa (2.9)

Using the numbers from Table 2.1 we find the figures shown in Table 2.2. From this we notice
that even if the A-subscriber behaves correctly and the telephone system is perfect, then only
75 %, respectively 45 % of the call attempts result in a conversation.

We distinguish between the service time which includes the time from the instant a server is
occupied until the server becomes idle again (e.g. both call set-up, duration of the conversa-
tion, and termination of the call), and conversation duration, which is the time period where
A talks with B. Because of failed call-attempts the mean service time is often less than the
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| — country D — country
Pe = 15 = 15% |p. = 2 = 20%
Dy = % = 6% |ps = % = 44%
Pn = 10 = 13% |p, = = = 11%
Py = o = 13%|p = 2 = 44%
Pa = o = 5% |pa = 2 = 44%

Table 2.2: The relevant probabilities for the individual outcomes of the call attempts calcu-
lated for Table 2.1

mean call duration if we include all call-attempts. Fig. 2.9 shows an example with observed
holding times.

Example 2.4.1: Mean holding times

We assume that the mean holding time of calls which are interrupted before B-answer (A-error,
congestion, technical errors) is 20 seconds and that the mean holding time for calls arriving at the
called party (B-subscriber) (no answer, B-busy, B-answer) is 180 seconds. The mean holding time
at the A-subscriber then becomes by using the figures in Table 2.1:

2
| — country: My = % <20 + % - 180 = 148 seconds
4
D — country: Mg = % -20 + WE)O - 180 = 92 seconds

We thus notice that the mean holding time increases from 148s, respectively 92s, at the A-subscriber
to 180s at the B-subscriber. If one call intent implies more repeated call attempts (cf. Example 2.4),
then the carried traffic may become larger than the offered traffic. O

If we know the mean service time of the individual phases of a call attempt, then we can
calculate the proportion of the call attempts which are lost during the individual phases.
This can be exploited to analyse electro-mechanical systems by using SPC-systems to collect
data.

Each call-attempt loads the controlling groups in the exchange (e.g. a computer or a control
unit) with an almost constant load whereas the load of the network is proportional to the
duration of the call. Because of this many failed call-attempts are able to overload the control
devices while free capacity is still available in the network. Repeated call-attempts are not
necessarily caused by errors in the telephone-system. They can also be caused by e.g. a
busy B-subscriber. This problem were treated for the first time by Fr. Johannsen in “Busy”
published in 1908 (Johannsen, 1908 [52]) . Fig. 2.10 and Fig. 2.11 show some examples from
measurements of subscriber behaviour.
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Figure 2.9: Frequency function for holding times of trunks in a local switching centre.
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Studies of the subscribers response to for example busy tone is of vital importance for the
dimensioning of telephone systems. In fact, human—factors (= subscriber-behaviour) is a
part of the teletraffic theory which is of great interest.

During Busy Hour o = 10 — 16 % of the subscribers are busy using the line for incoming
or outgoing calls. Therefore, we would expect that a% of the call attempts experience B-
busy. This is, however, wrong, because the subscribers have different traffic levels. Some
subscribers receive no incoming call attempts, whereas others receive more than the average.
In fact, it is so that the most busy subscribers on the average receive most call attempts.
A-subscribers have an inclination to choose the most busy B-subscribers, and in practice we
observe that the probability of B-busy is about 4 - «, if we take no measures. For residential
subscribers it is difficult to improve the situation. But for large business subscribers having
a PAX (= PABX) (Private Automatic eXchange) with a group-number a sufficient number
of lines will eliminate B-busy. Therefore, in industrialised countries the total probability of
B-busy becomes of the same order of size as « (Table 2.1). For D—countries the traffic is
more focused towards individual numbers and often the business subscribers don’t benefit
from group numbering, and therefore we observe a high probability of B-busy (40-50 %).

At the Ordrup measurements approximately 4% of the call were repeated call-attempts. If
a subscriber experience blocking or B-busy there is 70% probability that the call is repeated
within an hour. See Table 2.3.

Number of observations
Attempt no. | Success | Continue | Give up | p{success} | Persistence
75.389
1 56.935 7.512 | 10.942 0.76 0.41
2 3.252 2.378 1.882 0.43 0.56
3 925 951 502 0.39 0.66
4 293 476 182 0.31 0.72
5 139 248 89 0.29 0.74
> 5 134 114
Total 61.678 13.711

Table 2.3: An observed sequence of repeated call-attempts (national calls, “Ordrup—
measurements”). The probability of success decreases with the number of call-attempts,
while the persistence increases. Here a repeated call-attempt is a call repeated to the same
B—subscriber within one hour.

A classical example of the importance of the subscribers reaction was seen when Valby gas-
works (in Copenhagen) exploded in the mid sixties. The subscribers in Copenhagen generated
a lot of call-attempts and occupied the controlling devices in the exchanges in the area of
Copenhagen. Then subscribers from Esbjerg (western part of Denmark) phoning to Copen-
hagen had to wait because the dialled numbers could not be transferred to Copenhagen
immediately. Therefore the equipment in Esbjerg was kept busy by waiting, and subscribers
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making local calls in Esbjerg could not complete the call attempts.

This is an example of how a overload situation spreads like a chain reaction throughout the
network. The more tight a network has been dimensioned, the more likely it is that a chain
reaction will occur. An exchange should always be constructed so that it keeps working with
full capacity during overload situations.

In a modern exchange we have the possibility of giving priority to a group of subscribers in
an emergency situation, e.g. doctors and police (preferential traffic). In computer systems
similar conditions will influence the performance. For example, if it is difficult to get a free
entry to a terminal-system, the user will be disposed not to log off, but keep the terminal,
i.e. increase the service time. If a system works as a waiting—time system, then the mean
waiting time will increase with the third order of the mean service time (Chap. 13). Under
these conditions the system will be saturated very fast, i.e. be overloaded. In countries with
an overloaded telecommunication network (e.g. developing countries) a big percentage of the
call-attempts will be repeated call-attempts.
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Figure 2.10: Histogram for the time interval from occupation of register (dial tone) to B—
answer for completed calls. The mean value is 13.60 s.

Example 2.4.2: Repeated call attempt
This is an example of a simple model of repeated call attempts. Let us introduce the following

notation:
b = persistence (2.10)

B = p{non-completion} (2.11)
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The persistence b is the probability that an unsuccessful call attempt is repeated, and p{completion}
= (1 — B) is the probability that the B-subscriber (called party) answers. For one call intent we get
the following history: We get the following probabilities for one call intent:

Attempt No. p{B-answer} p{Continue} p{Give up}
0 1
1 (1- B) B-b B-(1-b)
2 (1-B)-(B-b) (B-b)? B-(1-0b)-(B-b)
3 (1—B)-(B-b)? (B-b)? B-(1—b)-(B-b)?
4 (1-B)-(B-b)? (B -b)* B-(1-0b)-(B-b)3
1-B 1 B-(1-b
Total (1(—3-)17) (=B ﬁ

Table 2.4: A single call intent results in a series of call attempts. The distribution of the
number of attempts is geometrically distributed.

1-B
p{Completion} = (f—_B)[)) (212)
B-(1-b
p{non—completion} = (1—(_81); (213)
No. of call attempt 11 intent ! (2.14)
. 1m T mten = .
0. OI call attempts per ca. € (I—Bb)

Let us assume the following mean holding times:
s = mean holding time of completed calls

sn = 0 = mean holding time of non-completed calls

Then we get the following relations between the traffic carried Y and the traffic offered A:
1-B

Y=A4 —— 2.1
1-B-b (2.15)
1-B-b
A=Y —— 2.16
T— 5 (2.16)
This is similar to the result given in ITU-T Rec. E.502. O

In practice, the persistence b and the probability of completion 1 — B will depend on the
number of times the call has been repeated (cf. Table 2.3). If the unsuccessful calls have
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a positive mean holding time, then the carried traffic may become larger than the offered
traffic.
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Figure 2.11: Histogram for all call attempts repeated within 5 minutes, when the called party
is busy.

2.5 Introduction to Grade-of-Service = GoS

The following section is based on (Veirg, 2001 [98]). A network operator must decide what
services the network should deliver to the end user and the level of service quality that the
user should experience. This is true for any telecommunications network, whether it is circuit-
or packet-switched, wired or wireless, optical or copper-based, and it is independent of the
transmission technology applied. Further decisions to be made may include the type and
layout of the network infrastructure for supporting the services, and the choice of techniques
to be used for handling the information transport. These further decisions may be different,
depending on whether the operator is already present in the market, or is starting service from
a greenfield situation (i.e. a situation where there is no legacy network in place to consider).

As for the Quality of Service (QoS) concept, it is defined in the ITU-T Recommendation E.800
as: The collective effect of service performance, which determine the degree of satisfaction
of a user of the service. The QoS consists of a set of parameters that pertain to the traffic
performance of the network, but in addition to this, the QoS also includes a lot of other
concepts. They can be summarised as:
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e service support performance
e service operability performance
e serveability performance and
e service security performance

The detailed definitions of these terms are given in the E.800. The better service quality
an operator chooses to offer to the end user, the better is the chance to win customers and
to keep current customers. But a better service quality also means that the network will
become more expensive to install and this, normally, also has a bearing to the price of the
service. The choice of a particular service quality therefore depends on political decisions by
the operator and will not be treated further here.

When the quality decision is in place the planning of the network proper can start. This
includes the decision of a transport network technology and its topology as well as reliability
aspects in case one or more network elements become malfunctioning. It is also at this stage
where the routing strategy has to be determined.

This is the point in time where it is needed to consider the Grade of Service (GoS). This is
defined in the ITU-T Recommendation E.600 as: A number of traffic engineering variables
to provide a measure of adequacy of a group of ressources under specified conditions. These
grade of service variables may be probability of loss, dial tone delay, etc. To this definition
the recommendation furthermore supplies the following notes:

e The parameter values assigned for grade of service variables are called grade of service
standards.

e The values of grade of service parameters achieved under actual conditions are called
grade of service results.

The key point to solve in the determination of the GoS standards is to apportion individual
values to each network element in such a way that the target end-to-end QoS is obtained.

2.5.1 Comparison of GoS and QoS

It is not an easy task to find the GoS standards needed to support a certain QoS. This is due
to the fact that the GoS and QoS concepts have different viewpoints. While the QoS views
the situation from the customer’s point of view, the GoS takes the network point of view.
We illustrate this by the following example:

Example 2.5.1:
Say we want to fix the end to end call blocking probability at 1 % in a telephone network. A
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customer will interpret this quantity to mean that he will be able to reach his destinations in 99 out
of 100 cases on the average. Fixing this design target, the operator apportioned a certain blocking
probability to each of the network elements, which a reference call could meet. In order to make
sure that the target is met, the network has to be monitored. But this monitoring normally takes
place all over the network and it can only be ensured that the network on the average can meet the
target values. If we consider a particular access line its GoS target may well be exceeded, but the
average for all access lines does indeed meet the target. O

GoS pertains to parameters that can be verified through network performance (the ability
of a network or network portion to provide the functions related to communications between
users) and the parameters hold only on average for the network. Even if we restrain ourselves
only to consider the part of the QoS that is traffic related, the example illustrates, that even
if the GoS target is fulfilled this need not be the case for the QoS.

2.5.2 Special features of QoS

Due to the different views taken by GoS and QoS a solution to take care of the problem
has been proposed. This solution is called a service level agreement (SLA). This is really
a contract between a user and a network operator. In this contract it is defined what the
parameters in question really mean. It is supposed to be done in such a way, that it will be
understood in the same manner by the customer and the network operator. Furthermore the
SLA defines, what is to happen in case the terms of the contract are violated. Some operators
have chosen to issue an SLA for all customer relationships they have (at least in principle),
while others only do it for big customers, who know what the terms in the SLA really mean.

2.5.3 Network performance

As mentioned above the network performance concerns the ability of a network or network
portion to provide the functions related to communications between users. In order to es-
tablish how a certain network performs, it is necessary to perform measurements and the
measurements have to cover all the aspects of the performance parameters (i.e. trafficability,
dependability, transmission and charging).

Furthermore, the network performance aspects in the GoS concept pertains only to the factors
related to trafficability performance in the QoS terminology. But in the QoS world network
performance also includes the following concepts:

e dependability,
e transmission performance, and

e charging correctness.
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It is not enough just to perform the measurements. It is also necessary to have an organisation
that can do the proper surveillance and can take appropriate action when problems arise. As
the network complexity keeps growing so does the number of parameters needed to consider.
This means that automated tools will be required in order to make it easier to get an overview
of the most important parameters to consider.

2.5.4 Reference configurations

In order to obtain an overview of the network under consideration, it is often useful to produce
a so-called reference configuration. This consists of one or more simplified drawing(s) of the
path a call (or connection) can take in the network including appropriate reference points,
where the interfaces between entities are defined. In some cases the reference points define an
interface between two operators, and it is therefore important to watch carefully what happens
at this point. From a GoS perspective the importance of the reference configuration is the
partitioning of the GoS as described below. Consider a telephone network with terminals,
subscriber switches and transit switches. In the example we ignore the signalling network.
Suppose the call can be routed in one of three ways:

1. terminal — subscriber switch — terminal

This is drawn as a reference configuration shown in Fig. 2.12.

| S |
Ref Ref
point A point A

Figure 2.12: Reference configuration for case 1.

2. terminal — subscriber switch — transit switch — subscriber switch — terminal

This is drawn as a reference configuration shown in Fig. 2.13.

| S | T | S |
Ref Ref Ref Ref
point A point B point B point A

Figure 2.13: Reference configuration for case 2.
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3. terminal —subscriber switch — transit switch — transit switch — subscriber switch — terminal

This is drawn as a reference configuration shown in Fig. 2.14.

| S | T | T | S |
Ref Ref Ref Ref Ref
point A point B point C point B point A

Figure 2.14: Reference configuration for case 3.

Based on a given set of QoS requirements, a set of GoS parameters are selected and defined
on an end-to-end basis within the network boundary, for each major service category provided
by a network. The selected GoS parameters are specified in such a way that the GoS can
be derived at well-defined reference points, i.e. traffic significant points. This is to allow the
partitioning of end-to-end GoS objectives to obtain the GoS objectives for each network stage
or component, on the basis of some well-defined reference connections.

As defined in Recommendation E.600, for traffic engineering purposes, a connection is an
association of resources providing means for communication between two or more devices in,
or attached to, a telecommunication network. There can be different types of connections
as the number and types of resources in a connection may vary. Therefore, the concept
of a reference connection is used to identify representative cases of the different types of
connections without involving the specifics of their actual realizations by different physical
means.

Typically, different network segments are involved in the path of a connection. For example,
a connection may be local, national, or international. The purposes of reference connections
are for clarifying and specifying traffic performance issues at various interfaces between dif-
ferent network domains. Each domain may consist of one or more service provider networks.
Recommendation 1.380/Y.1540 defines performance parameters for IP packet transfer; its
companion Draft Recommendation Y.1541 specifies the corresponding allocations and per-
formance objectives. Recommendation E.651 specifies reference connections for IP-access
networks. Other reference connections are to be specified.

From the QoS objectives, a set of end-to-end GoS parameters and their objectives for different
reference connections are derived. For example, end-to-end connection blocking probability
and end-to-end packet transfer delay may be relevant GoS parameters. The GoS objectives
should be specified with reference to traffic load conditions, such as under normal and high
load conditions. The end-to-end GoS objectives are then apportioned to individual resource
components of the reference connections for dimensioning purposes. In an operational net-
work, to ensure that the GoS objectives have been met, performance measurements and
performance monitoring are required.
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In IP-based networks, performance allocation is usually done on a cloud, i.e. the set of routers
and links under a single (or collaborative) jurisdictional responsibility, such as an Internet
Service Provider, ISP. A cloud is connected to another cloud by a link, i.e. a gateway router
in one cloud is connected via a link to a gateway router in another cloud. End-to-end
communication between hosts is conducted on a path consisting of a sequence of clouds and
interconnecting links. Such a sequence is referred to as a hypothetical reference path for
performance allocation purposes.



Chapter 3

Probability Theory and Statistics

All time intervals we consider are non-negative, and therefore they can be expressed by
non-negative random variables. A random variable is also called a variate. Time intervals
of interests are, for example, service times, duration of congestion (blocking periods, busy
periods), waiting times, holding times, CPU-busy times, inter-arrival times, etc. We denote
these time durations as lifetimes and their distribution functions as time distributions. In
this chapter we review the basic theory of probability and statistics relevant to teletraffic
theory.

3.1 Distribution functions

A time interval can be described by a random variable T that is characterised by a distribution
function F'(t):

F(t) = /t_dF(u) for 0<t< oo, (3.1)

F(it) = 0 for t<0.

In (3.1) we integrate from 0— to keep record of a possible discontinuity at ¢t = 0. When
we consider waiting time systems, there is often a positive probability to have waiting times
equal to zero, i.e. F'(0) # 0. On the other hand, when we look at the inter-arrival times, we
usually assume F'(0) = 0 (Sec. 5.2.3).

The probability that the duration of a time interval is less than or equal to ¢ becomes:

p(T'<1) = F(t).
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Sometimes it is easier to consider the complementary distribution function:
Fe(t)=1—F(t).
This is also called the survival distribution function.

We often assume that F'(t) is differentiable and that the following density function f(t) exists:

AF(t) = f(t)-dt =p{t <T < t+dt},  t>0. (3.2)

Usually, we assume that the service time is independent of the arrival process and that a
service time is independent of other service times. Analytically, many calculations can be
carried out for any time distribution. In general, we always assume that the mean value
exists.

3.1.1 Characterisation of distributions

Time distributions which only assume positive arguments possess some advantageous prop-
erties. For the i'th non-central moment, which we usually denote the :’th moment, it may be
shown that Palm’s identity is valid:

E{T’}:mi:/Oooti-f(t)dt:/oooz'ti_l-{1—F(t)}dt, i=1,2,..... (3.3)

Palm’s identity (3.3), which is valid for life-time distributions (only defined for non-negative
arguments), was first proved in (Palm, 1943,[79]) as follows.

e
[
- [ [

_ /:O ¢ f(z)da

=0

= m;.

The order of integration can be inverted because the integrand is non-negative. Thus we have
proved (3.3). The following simplified proof is correct because we assume that the moments
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exist:

m; = ooti t)dt
| e

=0

= —/wtid{l—F(t)}

=0

= —t{1-F@®}|¥ +/j {1-F(@)}dt’

t

— /Ooz' AT 1-F@#)}dt  qed

=0

Especially, we have the first two moments under the assumption that they exist:

mi = /Oootf(t)dt:/ooo{l—F(t)}dt,

my = /Ootzf(t)dt:/ 2t - {1 — F(t)} dt.

0 0

The mean value (expectation) is the first moment and often we leave out the index:

m=my = E{T}.
The i’th central moment is defined as:
BT —m)'} = [ (=) f0)
The variance is the 2nd central moment:
o? = B{(T —my)?}.
It is easy to show that:

o’ = mg—m] or

myg = 02+mf.

63

(3.4)

(3.5)

(3.8)

A distribution is normally uniquely defined by all its moments. A normalised measure for
the irregularity (dispersion) of a distribution is the coefficient of variation. It is defined as

the ratio between the standard deviation and the mean value:

o
CV = Coefficient of Variation = — .
my

(3.9)

This quantity is dimensionless, and we shall later apply it to characterise discrete distributions
(state probabilities). Another measure of irregularity is Palm’s form factor £, which is defined

as follows:

(3.10)
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The form factor ¢ as well as (¢/m;) are independent of the choice of time scale, and they will
appear in many formule in the following.

The larger a form factor, the more irregular is the time distribution, and the larger will for
example the mean waiting time in a waiting time system be. The form factor takes the
minimum value equal to one for constant time intervals (o = 0).

To estimate a distribution from observations, we are often satisfied by knowing the first two
moments (m and o or €) as higher order moments require extremely many observations to
obtain reliable estimates. Time distributions can also be characterised in other ways. We
consider some important ones below.

Example 3.1.1: Exponential distribution
For the exponential distribution we get:
oo o 2
mgz/ tz)\e_’\tdt:/ 2te Mdt = = .
t=0 t=0 A
It may be surprising that the two integrals are identical. The two integrands can, apart from a

constant, be transformed to an Erlang-3, respectively an Erlang-2, density function (4.8), which
has the total probability mass one:

o 2 o0
me 2/ (M) e’M/\dtzz Ate*”Adt:i.

A S 2 A Jiso A2
Od
Example 3.1.2: Constant time interval
For a constant time interval of duration h we have:
Od

3.1.2 Residual lifetime

We wish to find the distribution of the residual life time, given that a certain age = > 0 has
already been obtained.

The conditional distribution F'(t + x|z) is defined as follows, assuming p{T" >z} > 0 and
t>0:

p{(T>t+z)N(T >2z)}
p{T > x}

p{T >t+x}
p{T > x}

1-F(t+x)
1—F(x)

p{T >t+z|T >z} =
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and thus:
Ft4+zlz) = p{I' <t+4+z|T >z}

F(t+2)— F(z)

= 1= F(2) , (3.11)
f(t + z|x) {(j—;é)) (3.12)
Fig. 3.1 illustrates these calculations graphically.
The mean value m;, of the residual lifetime can be written as (3.4):
() = ——. /00{1 CF(t+ 2}, 23>0 (3.13)
1—F(z) Ji—

The Death rate at time x, i.e. the probability, that the considered lifetime terminates within
an interval (z,z + dx), under the condition that age x has been achieved, is obtained from
(3.11) by letting t = dux:

F(x +dx) — F(x)

_dP)
= Tra) (3.14)

The conditional density function u(x) is also called the hazard function. If this function is
given, then F'(x) may be obtained as the solution to the following differential equation:

dF(x)
dx

+p(x) - F(r) = pl(z), (3.15)

which has the following solution (assuming F'(0) = 0):

F(t) =1 — exp {— /0 ) du} | (3.16)

r0 =it exp{- u(w) ) (3.17)

The death rate p(t) is constant if and only if the lifetime is exponentially distributed (Chap. 4).
This is a fundamental characteristic of the exponential distribution which is called the Marko-
vian property (lack of memory (age)): The probability of terminating is independent of the
actual age (history) (Sec. 4.1).
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Figure 3.1: The density function of the residual life time conditioned by a given age x (3.11).
The example is based on a Weibull distribution We(2,5) where x = 3 and F(3) = 0.3023.

One would expect that the mean residual lifetime m, ,(z) decreases for increasing z, corre-
sponding to that the expected residual lifetime decreases when the age = increases. This is
not always the case. For an exponential distribution with form factor ¢ = 2 (Sec. 5.1), we
have m4, = m. For steep distributions (1 < e < 2) we have m;, <m (Sec. 4.2), whereas for
flat distributions (2 < e < 00), we have m;, > m (Sec. 4.3).

Example 3.1.3: Waiting-time distribution

Let us consider a queueing system with infinite queue where no customers are blocked. The waiting
time distribution Ws(t) for a random customer usually has a positive probability mass (atom) at
t = 0, because some of the customers get service immediately without any delay. We thus have
W5(0) > 0. The waiting time distribution W, (¢) for customers having positive waiting times then
becomes (3.11):

Ws (t) B Ws (0)

Wi(t) = —W.(0)
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or if we denote the probability of a positive waiting time {1 — W;(0)} by D (probability of delay):
D-{1-W.(t)} =1—Wst). (3.18)
For the density function we have (3.11):
D - wy(t) = ws(t). (3.19)

For mean values we get:
D -w=W, (3.20)

where the mean value for all customers is denoted by W, and the mean value for the delayed
customers is denoted by w. These formulee are valid for any queueing system with infinite queue.
O

3.1.3 Load from holding times of duration less than x

So far we have attached the same importance to all lifetimes independently of their duration.
The importance of a lifetime is often proportional to its duration, for example when we
consider the load of queueing system, charging of CPU-times, telephone conversations etc.

If we allocate a weight factor to a life time proportional to its duration, then the average
weight of all time intervals (of course) becomes equal to the mean value:

m = /ootf(t) dt, (3.21)

where f(t)dt is the probability of an observation within the interval (¢,¢ + dt), and t is the
weight of this observation.

In a traffic process we are interested in calculating the proportion of the total traffic which
is due to holding times of duration less than x:

/x tf(t)dt
pp =20 (3.22)

m

(This is the same as the proportion of the mean value which is due to contributions from
lifetimes less than x).

Often relatively few service times make up a relatively large proportion of the total load. From
Fig. 3.2 we see that if the form factor ¢ is 5, then 75% of the service times only contribute
with 30% of the total load (Vilfred Pareto’s rule). This fact can be utilised to give priority
to short tasks without delaying the longer tasks very much (Chap. 13).
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Figure 3.2: Example of the relative traffic load from holding times shorter than a given value
given by the percentile of the holding time distribution (3.22). Here € = 2 corresponds to an
exponential distribution and € = 5 corresponds to a Pareto-distribution. We note that the
10% largest holding times contributes with 33%, respectively 47%, of the load (cf. customer
averages and time averages in Chap. 5).

3.1.4 Forward recurrence time

The residual lifetime from a random point of time is called the forward recurrence time. In
this section we shall derive some important formulae. To formulate the problem we consider
an example. We wish to investigate the lifetime distribution of cars and ask car-owners chosen
at random about the age of their car. As the point of time is chosen at random, then the
probability of choosing a car is proportional to the total lifetime of the car. The distribution
of the future residual lifetime will then be identical with the already achieved lifetime.

By choosing a sample in this way, the probability of choosing a car is proportional to the
lifetime of the car, i.e. we will preferably choose cars with longer lifetimes (length-biased
sampling). The probability of choosing a car having a total lifetime x is given by (cf. moment
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distribution in statistics) (cf. the derivation of (3.22)):

x f(x)dx

m
As we consider a random point of time, the distribution of the remaining lifetime will be
uniformly distributed in (0, z]:
1
fltlz) ==, O0<t<zx.
x

Then the density function of the remaining lifetime at a random point of time is as follows:

oft) = /;”LM7

T m

o(t) = 1_TF“> | (3.23)

where F'(t) is the distribution function of the total lifetime and m is the mean value.

By applying the identity (3.3), we note that the i’th moment of v(t) is given by the (i 4+ 1)’th
moment of f(t):

My = / t o(t) dt
0

m
S /OO('+1) t {1 — F(t)} dt
o o« —_— Z . . —
i+1 m Jy ’
1 1
i, 1+1 m ML, f ( )
We obtain the mean value: m
mlﬂ) = E <€, (325)

where ¢ is the form factor of the lifetime distribution. These formulse are also valid for discrete
time distributions.

3.1.5 Distribution of the j’th largest of k random variables

Let us assume that k random variables {71, T, ..., T} are independent and identically dis-
tributed with distribution function F(t). The distribution of the j’th largest variable will
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then be given by:

p{j’th largest < t} Z( ) {1 - F@)Y F(t)" (3.26)

as at most j—1 variables may be larger than t. The smallest one (or k’th largest, j=k) has
the distribution function:

Fun(t) =1 {1-F(t)}", (3.27)

and the largest one (j=1) has the distribution function:
Frax(t) = F(t)". (3.28)

If the random variables has individual distribution functions F;(t), we get an expression more
complex than (3.26). For the smallest and the largest we get:

k
Fun(t) = 1-][{1-F®}, (3.29)

Faax(t) = J]Fi(0). (3.30)

3.2 Combination of random variables

We can combine lifetimes by putting them in series or in parallel or by a combination of the
two.

3.2.1 Random variables in series

A linking in series of k independent time intervals corresponds to addition of k independent
random variables, i.e. convolution of the random variables.

If we denote the mean value and the variance of the i’th time interval by m; ;, o7, respectively,
then the sum of the random variables has the following mean value and variance:

k
m=m; = Z my;, (331)

P ZUZ-Q. (3.32)
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In general, we should add the so-called cumulants, and the first three cumulants are identical
with the first three central moments.

The distribution function of the sum is obtained by the convolution:

F(t)=F(l) @ F(t) @ @ Fi(t), (3.33)
where ® is the convolution operator (Sec. 6.2.2).

Example 3.2.1: Binomial distribution and Bernoulli trials

Let the probability of success in a trial (e.g. throwing a dice) be equal to p and the probability
of failure thus equal to 1 —p. The number of successes in a single trial will then be given by the
Bernoulli distribution:

N ) 1-p, 1 =0,
(i) = { . i1 (3.34)

If we in total make S trials, then the distribution of number of successes is Binomial distributed:

st = (7)o 1= (3.35)

which therefore is obtainable by convolving S Bernoulli distributions. If we make one additional
trial, then the distribution of the total number of successes is obtained by convolution of the Binomial
distribution (3.35) and the Bernoulli distribution (3.34):

psp (i) = ps(i)-p1(0) +ps(i—1) - p1(1)

Vo a-ps= - (-p+ (. ° ) pta-p)si+p
! (7

<f> - (Z fl>} pt (1—p)S—i+1
S

3.2.2 Random variables in parallel

By the weighting of ¢ independent random variables, where the i'th variable appears with
weight factor p;, where

¢
sz = 17
=1
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and has mean value m; ; and variance o2, the random variable of the sum has the mean value
and variance as follows:

l
m = Zpl My, (336)
=1
l
ol = Zpi (o7 +mi;) —m”. (3.37)
=1

In this case we must weight the non-central moments. For the j'th moment we have

¢
mj = Zpl . mjyi, (338)
i=1
where m;; is the j'th non-central moment of the distribution of the ¢'th interval.

The distribution function is as follows:

F(t)=) pi-F(t). (3.39)

A similar formula is valid for the density function:

ft) = Zpi - fi(t).

A weighted sum of distributions is called a compound distribution.

3.3 Stochastic sum

By a stochastic sum we understand the sum of a stochastic number of random variables (Feller,
1950 [27]). Let us consider a trunk group without congestion, where the arrival process and
the holding times are stochastically independent. If we consider a fixed time interval T, then
the number of arrivals is a random variable N. In the following N is characterised by:

N :  density function p(7),

mean value my,, (3.40)

2

variance o, ,

Arriving call number ¢ has the holding time 7T;. All 7T; have the same distribution, and each
arrival (request) will contribute with a certain number of time units (the holding times) which



3.3. STOCHASTIC SUM 73

is a random variable characterised by:
T :  density function f(t),

mean value mq,, (3.41)

variance o7,

The total traffic volume generated by all arrivals (requests) arriving within the considered
time interval 7" is then a random variable itself:

Figure 3.3: A stochastic sum may be interpreted as a series/parallel combination of random
variable.

In the following we assume that T; and N are stochastically independent. This will be fulfilled
when the congestion is zero.

The following derivations are valid for both discrete and continuous random variables (sum-

mation is replaced by integration or vice versa). The stochastic sum becomes a combination

of random variables in series and parallel as shown in Fig. 3.3 and dealt with in Sec. 3.2. For
a given branch i we find (Fig. 3.3):

my; = 1My, (3.43)

o} = i-o}, (3.44)

Moy = i-07 4+ (i-myy)?. (3.45)
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By summation over all possible values (branches) i we get:

0
mis = Zp(i)'ml,i
i=1

oo
= ZP(Z) LM,
i=1

mis = Mit-Min, (3-46)
Mas = Zp(i)'mz,i
i=1

— ZP(@) Aiof + (i -muy)?},

2 2
Mays = Miy - 0p + My Moy, (3.47)
2 2 2 2
Og = Min-0y + Mg (mQ,n - ml,n) )
2 2 2 2
Oy = Mip- 0, +mi, 0, (3.48)

We notice there are two contributions to the total variance: one term because the number
of calls is a random variable (02), and a term because the duration of the calls is a random
variable (0?).

Example 3.3.1: Special case 1: N = n = constant (m,, = n)

mis = MN-Mig,

o2 = o?-n. (3.49)

S

This corresponds to counting the number of calls at the same time as we measure the traffic volume
so that we can estimate the mean holding time. O

Example 3.3.2: Special case 2: T' =1t = constant (m; = t)
mis = Mip-t,

2 _ 42 2
o, = t°-o0,.

(3.50)

If we change the scale from 1 to m;4, then the mean value has to be multiplied by m;; and the

variance by m?,. The mean value m;; = 1 corresponds to counting the number of calls, i.e. a

problem of counting. O
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Example 3.3.3: Stochastic sum

As a non-teletraffic example IV may denote the number of rain showers during one month and 7; may
denote the precipitation due to the i’th shower. Sp is then a random variable describing the total
precipitation during a month. N may also for a given time interval denote the number of accidents
registered by an insurance company and T; denotes the compensation for the ¢’th accident. St then
is the total amount paid by the company for the considered period. O
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Chapter 4

Time Interval Distributions

The exponential distribution is the most important time distribution within teletraffic theory.
This time distribution is dealt with in Sec. 4.1.

Combining exponential distributed time intervals in series, we get a class of distributions
called Erlang distributions (Sec. 4.2). Combining them in parallel, we obtain hyper—exponen-
tial distribution (Sec. 4.3). Combining exponential distributions both in series and in par-
allel, possibly with feedback, we obtain phase-type distributions, which is a class of general
distributions. One important sub—class of phase-type distributions is Coxian-distributions
(Sec. 4.4). We note that an arbitrary distribution can be expressed by a Cox—distribution
which can be used in analytical models in a relatively simple way. Finally, we also deal with
other time distributions which are employed in teletraffic theory (Sec. 4.5). Some examples
of observations of life times are presented in Sec. 4.6.

4.1 Exponential distribution

In teletraffic theory this distribution is also called the negative exponential distribution. It
has already been mentioned in Sec. 3.1.2 and it will appear again in Sec. 6.2.1.

In principle, we may use any distribution function with non—negative values to model a life—
time. However, the exponential distribution has some unique characteristics which make this
distribution qualified for both analytical and practical uses. The exponential distribution
plays a key role among all life-time distributions.
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This distribution is characterised by a single parameter, the intensity or rate A:

Fit) = 1—e™, X>0, t>0, (4.1)

ft) = de ™™, A>0, t>0. (4.2)

The gamma function is defined by:

'n+1)= / t"e tdt =n!. (4.3)
0

We replace t by At and get the v’th moment:

|
m, = ;_ : (4.4)

1

Mean valuem = m; = N
‘ 2

Second moment: ms = 2
. . 2 o 1

Variance: o = 2
Form factor: € = 2

Figure 4.1: In phase diagrams an exponentially distributed time interval is shown as a box
with the intensity. The box thus means that a customer arriving to the box is delayed an
exponentially distributed time interval before leaving the box.

The exponential distribution is very suitable for describing physical time intervals (Fig. 6.2).
The most fundamental characteristic of the exponential distribution is its lack of memory.
The distribution of the residual time of a telephone conversation is independent of the actual
duration of the conversation, and it is equal to the distribution of the total life-time (3.11):

)\e—(t—i-:c))\

fle+ale) = 2

= e M

= f(®).

If we remove the probability mass of the interval (0, ) from the density function and nor-
malise the residual mass in (z, 00) to unity, then the new density function becomes congruent
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with the original density function. The only continuous distribution function having this
property is the exponential distribution, whereas the geometric distribution is the only dis-
crete distribution having this property. An example with the Weibull distribution where this
property is not valid is shown in Fig. 3.1. For kK = 1 the Weibull distribution becomes iden-
tical with the exponential distribution. Therefore, the mean value of the residual life-time is
my, = m, and the probability of observing a life-time in the interval (¢,¢+ dt), given that it
occurs after ¢, is given by

pit< X <t+dfX >t} = fft—%
= \dt. (45)

Thus it depends only upon A and dt, but it is independent of the actual age .

4.1.1 Minimum of k exponentially distributed random variables
We assume that two random variables X; and X, are mutually independent and exponentially
distributed with intensities A; and A, respectively. A new random variable X is defined as:
X =min {X;, X5} .
The distribution function of X is:
p{X <t} =1—e Wit (4.6)
This distribution function itself is also an exponential distribution with intensity (A; + Ag).

Under the assumption that the first (smallest) event happens within the time interval ¢, t4dt,
then the probability that the random variable X is realized first (i.e. takes places in this
interval and the other takes place later) is given by:

P& < Xl ) = P{t< X <t+dt)

A e Mtdt et
()\1 + )\2) e—(Ai+A2)t ¢

At
- N 4.7
A+ Ao (4.7

i.e. independent of . Thus we do not need to integrate over all values of ¢.

These results can be generalised to k variables and make up the basic principle of the simu-
lation technique called the roulette method, a Monte Carlo simulation methodology.
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4.1.2 Combination of exponential distributions

If one exponential distribution (i.e. one parameter) cannot describe the time intervals in suffi-
cient detail, then we may have to use a combination of two or more exponential distributions.
Conny Palm introduced two classes of distributions: steep and flat.

A steep distribution corresponds to a set of stochastic independent exponential distributions
in series (Fig. 4.2), and a flat distribution corresponds to exponential distributions in par-
allel (Fig. 4.4). This structure naturally corresponds to the shaping of traffic processes in
telecommunication and data networks.

By the combination of steep and flat distribution, we may obtain an arbitrary good approx-

imation for any distribution function (see Fig. 4.7 and Sec. 4.4). The diagrams in Figs. 4.2
& 4.4 are called phase-diagrams.

4.2 Steep distributions

— =1\ N B— e e S VI -

Figure 4.2: By combining k exponential distributions in series we get a steep distribution
(e < 2). If all k distributions are identical (A; = \), then we get an Erlang—k distribution.

Steep distributions are also called hypo—exponential distributions or generalised Erlang dis-
tributions with a form factor in the interval 1 < ¢ < 2. This generalised distribution function
is obtained by convolving k exponential distributions (Fig. 4.2). Here we only consider the
case where all k£ exponential distributions are identical. Then we obtain the following density
function which is called the Erlang-k distribution:

F(t) = ZQt)J'.eM (4.9)

‘e (cf. Sec. 6.1). (4.10)
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f(t)

3

Erlang—k distributions

T

0 1 2 3

Figure 4.3: Erlang—k distributions with mean value equal to one. The case k = 1 corresponds
to an exponential distribution (density functions).

The following moments can be found by using (3.31) and (3.32):

k
k
ot = oE (4.12)
o2 1
= 1+—=14+= 4.13
€ tog =1t (4.13)
The 7’th non-central moment is:
(i+k—1)" /1Y
i =— = . 4.14
TSl T\ (4.14)

The density function is derived in Sec. 6.2.2. The mean residual life-time m; ,.(x) for z > 0
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will be less than the mean value:
ml,r<x> <m, x> 0.

With this distribution we have two parameters (A, k) available to be estimated from observa-
tions. The mean value is often kept fixed. To study the influence of the parameter k in the
distribution function, we normalise all Erlang—k distributions to the same mean value as the
Erlang—1 distribution, i.e. the exponential distribution with mean 1/\, by replacing t by kt
or A by kA\:

k—1
ft)dt = % e M ENdt, (4.15)
1
1
2
e = 1+ ! (4.18)
- - _

Notice that the form factor is independent of time scale. The density function (4.15) is
illustrated in Fig. 4.3 for different values of k with A = 1. The case k = 1 corresponds to the
exponential distribution. When k — oo we get a constant time interval (¢ = 1). By solving
f'(t) = 0 we find the maximum value at:
k—1
M=——. 4.19
. (119
The so-called steep distributions are named so because the distribution functions increase
quicker from 0 to 1 than the exponential distribution do. In teletraffic theory we sometimes
use the name Erlang-distribution for the truncated Poisson distribution (Sec. 7.3).

4.3 Flat distributions

The general distribution function is in this case a weighted sum of exponential distributions
(compound distribution) with a form factor € > 2:

F(t) = /OOO (1—e)dW(N), A>0, t>0, (4.20)

where the weight function may be discrete or continuous (Stieltjes integral). This distribution
class corresponds to a parallel combination of the exponential distributions (Fig. 4.4). The
density function is called complete monotone due to the alternating signs (Palm, 1957 [82]):

(=1)" - f¥(t) > 0. (4.21)
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pl )\1
D2 )\2

x Yy
Pi Ak Z?:l pi =1

Figure 4.4: By combining k exponential distributions in parallel and choosing branch number
1 with the probability p;, we get a hyper—exponential distribution, which is a flat distribution
(e>2).

The mean residual life-time my () for all x > 0 is larger than the mean value:

my(x) >m, x>0. (4.22)

4.3.1 Hyper-exponential distribution

In this case, W(\) is discrete. Suppose we have the following given values:
)\17 )\Qa HEI) )‘k7
and that W (\) has the positive increases:

b1, P2, .- 5 Dk,

where

k
> pi=1. (4.23)
=1

For all other values W () is constant. In this case (4.20) becomes:

k
F(ty=1-=) pi-e™, t>0. (4.24)
=1
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The mean values and form factor may be found from (3.36) and (3.37) (0, = my; = 1/\;):

k
mi = Zi— (4.25)

i=1 "

€ = {ZPz%}/{ZPz%} > 2. (4.26)

If £ =1 or all \; are equal, we get the exponential distribution.

This class of distributions is called hyper—exponential distributions and can be obtained by
combining k exponential distributions in parallel, where the probability of choosing the i’th
distribution is given by p;. The distribution is called flat because its distribution function
increases more slowly from 0 to 1 than the exponential distribution does.

In practice, it is difficult to estimate more than one or two parameters. The most important
case is forn =2 (p1 = p,p2 = 1 — p):

Fit)y=1—p-e — (1 —p)-e 2. (4.27)

Statistical problems arise even when we deal with three parameters. So for practical appli-
cations we usually choose \; = 2Ap; and thus reduce the number of parameters to only two:

F(t) =1—pe 2 _ (1 — p)e~ AP (4.28)
The mean value and form factor becomes:
1
m = —
)\ b
1

= — . 4.29
2p(1 —p) (4.29)

For this choice of parameters the two branches have the same contribution to the mean value.
Fig. 4.5 illustrates an example.

4.4 Cox distributions

By combining the steep and flat distributions we obtain a general class of distributions (phase—
type distributions) which can be described with exponential phase in both series and parallel
(e.g. a k x ¢ matrix). To analyse a model with this kind of distributions, we can apply the
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Figure 4.5: Density (frequency) function for holding times observed on lines in a local ex-
change during busy hours.
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(1 —Po)
fh(l —pl) A1
fJ2(1 —p2) —= A = A
Qk(l _pk;) —= A1 =\

— - - ——>

Figure 4.6: A Cox—distribution is a generalised Erlang—distribution having exponential dis-
tributions in both parallel and series. The phase-diagram is equivalent to Fig. 4.7.

A A

Prk—1

I —pra

Figure 4.7: The phase diagram of a Cox distribution, cf. Fig. 4.6.
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theory of Markov processes, for which we have powerful tools as the phase-method. In the
more general case we can allow for loop back between the phases.

We shall only consider Cox-distributions as shown in Fig. 4.6 (Cox, 1955 [17]). These also ap-
pear under the name of “Branching Erlang” distribution (Erlang distribution with branches).

The mean value and variance of this Cox distribution (Fig. 4.7) are found from the formulae
in Sec. 3.2 for random variables in series and parallel as shown in fig. 4.6:

m —Zqi<1—pi>{z§j} , (4.30)

where
% =DPo pP1 P2 Pi-1l- (4.31)

The term ¢;(1 — p;) is the probability of jumping out after being in i’th phase. It can be
shown thet the mean value can be expressed by the simple form:

k k
my = Z% = Z my;, (432)

where my ; = ¢;/\; is the i’th phase related mean value. The second moment becomes:
k
my = Z {Qi (1—m) m2z} )
i=1

k %

= ) Sai(l-p)- Z%‘F(Z)\%) : (4.33)

i=1 j=1 7=1

where mo; is obtained from (3.8): mo,; = Jgﬂ- +mii. It can be shown that this can be written

as: L ;
77@222{(2%)3\—} (4.34)

From this we get the variance (3.8):

o2 =my —m?.
The addition of two Cox—distributed random variables yields another Cox-distributed vari-
able, i.e. this class is closed under the operation of addition.

The distribution function of a Cox distribution can be written as a sum of exponential func-

tions:
k

L—F(t)=) ¢-e™, (4.35)

=1
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where

and

4.4.1 Polynomial trial

The following properties are of importance for later applications. If we consider a point of
time chosen at random within a Cox—distributed time interval, then the probability that this
point is within phase 7 is given by:

M i 1,2. k. (4.36)
m

If we repeat this experiment y (independently) times, then the probability that phase i is
observed y; times is given by multinomial distribution (= polynomial distribution):

m Y1 m Y2 m Yk
p{y\yl,yz,---,yk}z( / )( 1’1) ( m) ( 1’k) , (4.37)
Y1Yz - .- Yk m m m

where

k
?J:Zyi,
i=1

and

|
(o’ ) =t (1.38)
Y1 Y2 ... Yk yp! -yl e !

These (4.38) are called the multinomial coefficients. By the property of “lack of memory” of
the exponential distributions (phases) we have full information about the residual life-time,
when we know the number of the actual phase.

4.4.2 Decomposition principles

Phase-diagrams are a useful tool for analysing Cox distributions. The following is a funda-
mental characteristic of the exponential distribution (Iversen & Nielsen, 1985 [11]):

Theorem 4.1 An exponential distribution with intensity A can be decomposed into a two-
phase Cox distribution, where the first phase has an intensity p > X and the second phase
intensity A (cf. Fig. 4.8).
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According to Theorem 4.1 a hyper—exponential distribution with ¢ phases is equivalent to a
Cox distribution with the same number of phases. The case ¢ = 2 is shown in Fig. 4.10.

We have another property of Cox distributions (Iversen & Nielsen, 1985 [11]):

Theorem 4.2 The phases in any Cox distribution can be ordered such as \; > \j11.

Theorem 4.1 shows that an exponential distribution is equivalent to a homogeneous Cox
distribution (homogeneous: same intensities in all phases) with intensity m and an infinite
number of phases (Fig. 4.8). We notice that the branching probabilities are constant. Fig. 4.9
corresponds to a weighted sum of Erlang—k distributions where the weighting factors are
geometrically distributed.

1—

= >

= I>

Figure 4.8: An exponential distribution with rate X is equivalent to the shown Cox distribution
(Theorem 4.1).

Figure 4.9: An exponential distribution with rate A\ is by successive decomposition trans-
formed into a compound distribution of homogeneous Erlang—k distributions with rates i > X,
where the weighting factors follows a geometric distribution (quotient p = A/ ).

By using phase diagrams it is easy to see that any exponential time interval (\) can be
decomposed into phase-type distributions (JA;), where A; > A. Referring to Fig. 4.11 we
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A2

Figure 4.10: A hyper—exponential distribution with two phases (A\; > A\a, po = 1 —p;) can be
transformed into a Cox—2 distribution (cf. Fig. 4.4).

notice that the rate out of the macro-state (dashed box) is A independent of the micro state.
When the number of phases k is finite and there is no feedback the final phase must have
rate \.

Figure 4.11: This phase-type distribution is equivalent to a single exponential when p;-\; = .
Thus \; > A as 0 <p; < 1.

4.4.3 Importance of Cox distribution

Cox distributions have attracted a lot of attention during recent years. They are of great
importance due to the following properties:

a. Cox distribution can be analysed using the method of phases.

b. One can approximate an arbitrary distribution arbitrarily well with a Cox distribution.
If a property is valid for a Cox distribution, then it is valid for any distribution of
practical interest.

By using Cox distributions we can with elementary methods obtain results which previously
required very advanced mathematics.
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In the connection with practical applications of the theory, we have used the methods to esti-
mate the parameters of Cox distribution. In general there are 2 k parameters in an unsolved
statistical problem. Normally, we may choose a special Cox distribution (e.g. Erlang—k or
hyper—exponential distribution) and approximate the first moment.

By numerical simulation on computers using the Roulette method, we automatically obtain

the observations of the time intervals as Cox distribution with the same intensities in all
phases.

4.5 Other time distributions

In principle, every distribution which has non-negative values, may be used as a time dis-
tribution to describe the time intervals. But in practice, one may work primarily with the
above mentioned distributions.

We suppose the parameter k in Erlang-k distribution (4.8) takes non-negative real values and
obtain the gamma distribution:

f(t) = gm0 e ™A A0, £>0. (4.39)

The mean value and variance are given in (4.11) and (4.12).

A distribution also known in teletraffic theory is the Weibull distribution:
Ft)=1—e ™" >0, k>0, A>0. (4.40)

This distribution has a time-dependent death intensity (3.14):

Ae= D L (X)L de
s = ut) = 07
1—F(t) e-(A)

= Me(\)FL. (4.41)

The distribution has its origin in the reliability theory. For k = 1 we get the exponential
distribution.

The Pareto distribution is given by:

Flt) = 1= (14not) () (4.42)
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The mean value and form factor are as follows:

my = )

e = , 0<m <A. 4.43

py— (4.43)

Note that the variance does not exist for A < ny. Letting 7y — 0 (4.42) becomes an ex-

ponential distribution. If the intensity of a Poisson process is gamma distributed, then the
inter-arrival times are Pareto-distributed.

Later, we will deal with a set of discrete distributions, which also describes the life-time, such
as geometrical distribution, Pascal distribution, Binomial distribution, Westerberg distribu-
tion, etc. In practice, the parameters of distributions are not always stationary.

The service (holding) times can be physically correlated with the state of the system. In
man-machine systems the service time changes because of busyness (decreases) or tiredness
(increases). In the same way, electro-mechanical systems work more slowly during periods
of high load because the voltage decreases.

For some distributions which are widely applied in the queueing theory, we have the following
abbreviated notations (cf. Sec. 13.1):

M ~  Exponential distribution (Markov),

E. ~ Erlang-k distribution,

H, ~ Hyper-exponential distribution of order n,
D ~ Constant (Deterministic),

Cox ~ Cox distribution,

G ~ General = arbitrary distribution.

4.6 Observations of life-time distribution

Fig. 4.5 shows an example of observed holding times from a local telephone exchange. The
holding time consists of both signalling time and, if the call is answered, conversation time.
Fig. 6.2 shows observation and inter—arrival times of incoming calls to a transit telephone
exchange during one hour.

From its very beginning, the teletraffic theory has been characterised by a strong interac-
tion between theory and practice, and there has been excellent possibilities to carry out
measurements.

Erlang (1920, [!1]) reports a measurement where 2461 conversation times were recorded in
a telephone exchange in Copenhagen in 1916. Palm (1943 [79]) analysed the field of traffic
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measurements, both theoretically and practically, and implemented extensive measurements
in Sweden.

By the use of computer technology a large amount of data can be collected. The first stored
program controlled by a mini-computer measurement is described in (Iversen, 1973 [35]). The
importance of using discrete values of time when observing values is dealt with in Chapter 15.
Bolotin (1994, [7]) has measured and modelled telecommunication holding times.

Numerous measurements on computer systems have been carried out. Where in telephone
systems we seldom have a form factor greater than 6, we observe form factors greater than
100 in data traffic. This is the case for example for data transmission, where we send either
a few characters or a large quantity of data. To describe these data we use heavy-tailed
distributions. A distribution is heavy-tailed in strict sense if the tail of the distribution
function behaves as a power law, i.e. as

1—Ft)=t™, 0<a<2.

The Pareto distribution (4.42) is heavy-tailed in strict sense. Sometimes distributions with
a tail heavier than the exponential distribution are classified as heavy-tailed. Examples are
hyper-exponential, Weibull, and log-normal distributions. More recent extensive measure-
ments have been performed and modelled using self-similar traffic models (Jerkins & al.,
1999 [51]). These subjects are dealt with in more advanced chapters.
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Chapter 5

Arrival Processes

Arrival processes, such as telephone calls arriving to an exchange are described mathemat-
ically as stochastic point processes. For a point process, we have to be able to distinguish
two arrivals from each other. Informations concerning the single arrival (e.g. service time,
number of customers) are ignored. Such information can only be used to determine whether
an arrival belongs to the process or not.

The mathematical theory for point process was founded and developed by the Swede Conny
Palm during the 1940’es. This theory has been widely applied in many subjects. It was

mathematically refined by Khintchine ([63], 1968), and has been made widely applicable in
many textbooks.

5.1 Description of point processes

In the following we only consider simple point processes, i.e. we exclude multiple arrivals as
for example twin arrivals. For telephone calls this may be realized by a choosing sufficient
detailed time scale.

Consider call arrival times where the i’th call arrives at time T;:
0=To<Dhi<Th<..<Ti<Tij1<.... (5.1)

The first observation takes place at time Ty = 0.

The number of calls in the half open interval [0,¢] is denoted as N;. Here NV, is a random

variable with continuous time parameters and discrete space. When ¢ increases, N; never
decreases.
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Figure 5.1: The call arrival process at the incoming lines of a transit exchange.

The time distance between two successive arrivals is:

XZ:E—T;,M 221,2, (52)
This is called the inter-arrival time, and the distribution of this process is called the inter-
arrival time distribution.
Corresponding to the two random variables N; and X;, the two processes can be characterised
in two ways:

1. Number representation N,;: time interval ¢ is kept constant, and we observe the random
variable N, for the number of calls in ¢.

2. Interval representation T;: number of arriving calls is kept constant, and we observe
the random variable T; for the time interval until there has been n arrivals (especially
Tl = Xl)

The fundamental relationship between the two representations is given by the following simple
relation:

Ny < n, if and only if
(5.3)

T,=r,Xi > t n=12,...

This is expressed by Feller-Jensen’s identity:

p{N: < n} =p{T, > t}, n=12... (5.4)
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Analysis of point process can be based on both of these representations. In principle they
are equivalent. Interval representation corresponds to the usual time series analysis. If we
for example let 7 = 1, we obtain call averages, i.e. statistics based on call arrivals.

Number representation has no parallel in time series analysis. The statistics we obtain are
calculated per time unit and we get time averages (cf. the difference between call congestion
and time congestion).

The statistics of interests when studying point processes can be classified according to the
two representations.

5.1.1 Basic properties of number representation

There are two properties which are of theoretical interest:

1. The total number of arrivals in interval [t1, t5] is equal to Ny, — Ny, .
The average number of calls in the same interval is called the renewal function H:

H(t,t) = E{N,, — N,,} . (5.5)

2. The density of arriving calls at time ¢ (time average) is:

A= i Nerae = N,

N
Am A7 =N,. (5.6)

We assume that \; exists and is finite. We may interpret \; as the intensity by which
arrivals occur at time ¢ (cf. Sec. 3.1.2).
For simple point processes, we have:

P{Nerar— Ne 2 2} = o(At), (5.7)
P{Nar — Ny =1} = MNAt+o(At), (5.8)
p{Nar — Ny =0} = 1—NAt+ o(At), (5.9)
where by definition:
lim O(AA;) ~0. (5.10)

3. Index of Dispersion for Counts, IDC.
To describe second order properties of the number representation we use the index of
dispersion for counts, IDC. This describes the variations of the arrival process during a
time interval ¢ and is defined as:
Var{N;}

IDC = AR (5.11)
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By dividing the time interval ¢ into x intervals of duration ¢/x and observing the number
of events during these intervals we obtain an estimate of IDC(t). For the Poisson process
IDC becomes equal to one. IDC is equal to “peakedness”, which we later introduce to
characterise the number of busy channels in a traffic process (7.7).

5.1.2 Basic properties of interval representation

4. The distribution f(t) of time intervals X; (5.2) (and by convolving the distribution by

itself i —1 times the distribution of the time until the i’th arrival).

Fi(t) = p{X,<t}, (5.12)

The mean value is a call average. A remewal process is a point process, where se-
quential inter-arrival times are stochastic independent to each other and have the same
distribution (except for X;), i.e. my; = m,;. (IID = Identically and Independently
Distributed).

. The distribution V() of the time interval from a random epoch until the first arrival

occurs. The mean value of V (¢) is a time average, which is calculated per time unit.

. Index of Dispersion for Intervals, IDI.

To describe second order properties for the interval representation we use the Index of
Dispersion for Intervals, IDI. This is defined as:

~ Var{X;}

IDI= ————
E{X;}*’

(5.14)
where X; is the inter-arrival time. For the Poisson process, which has exponentially
distributed service times, IDI becomes equal to one. IDI is equal to Palm’s form factor
minus one (3.10). In general, IDI is more difficult to obtain from observations than
IDC; and more sensitive to the accuracy of measurements and smoothing of the traffic
process. The digital technology is more suitable for observation of IDC, whereas it
complicates the observation of IDI (Chap. 15).

Which of the two representations one should use in practice really depends on the actual
case. This can be illustrated by the following examples.

Example 5.1.1: Measuring principles
Measures of teletraffic performance are carried out by one of the two basic principles as follows:

1. Passive measures. Measuring equipment records at regular time intervals the number of

arrivals since the last recording. This corresponds to the scanning method, which is suitable
for computers. This corresponds to the number representation where the time interval is fixed.
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2. Active measures. Measuring equipment records an event at the instant it takes place. We
keep the number of events fixed and observe the measuring interval. Examples are recording
instruments. This corresponds to the interval representation, where we obtain statistics for
each single call.

Example 5.1.2: Test calls
Investigation of the traffic quality. In practice this is done in two ways:

1. The traffic quality is estimated by collecting statistics of the outcome of test calls made
to specific (dummy-) subscribers. The calls are generated during busy hour independently
of the actual traffic. The test equipment records the number of blocked calls etc. The
obtained statistics corresponds to time averages of the performance measure. Unfortunately,
this method increases the offered load on the system. Theoretically, the obtained performance
measures will differ from the correct values.

2. The test equipments collect data from call number N,2N,3N,..., where for example N =
1000. The traffic process is unchanged, and the performance statistics is a call average.

Example 5.1.3: Call statistics

A subscriber evaluates the quality by the fraction of calls which are blocked, i.e. call average.

The operator evaluates the quality by the proportion of time when all trunks are busy, i.e. time
average. The two types of average values (time/call) are often mixed up, resulting in apparently
conflicting statement. O

Example 5.1.4: Called party busy (B-Busy)

At a telephone exchange 10% of the subscribers are busy, but 20% of the call attempts are blocked
due to B-busy (called party busy). This phenomenon can be explained by the fact that half of
the subscribers are passive (i.e. make no call attempts and receive no calls), whereas 20% of the
remaining subscribers are busy. G. Lind (1976 [73]) analysed the problem under the assumption
that each subscriber on the average has the same number of incoming and outgoing calls. If mean
value and form factor of the distribution of traffic per subscriber is b and e, respectively, then the
probability that a call attempts get B-busy is b - €. O

5.2 Characteristics of point process

Above we have discussed a very general structure for point processes. For specific applications
we have to introduce further properties. Below we only consider number representation, but
we could do the same based on the interval representation.
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5.2.1 Stationarity (Time homogeneity)

This property can be described as, regardless of the position on the time axis, then the
probability distributions describing the point process are independent of the instant of time.
The following definition is useful in practice:

Definition: For an arbitrary t5 > 0 and every k > 0, the probability that there are £k arrivals
in [t1,t; + 2] is independent of ¢y, i.e. for all ¢, k we have:

PANt+t, = Noy =k} = p{Nt,rtg1¢ — Neye = k. (5.15)

There are many other definitions of stationarity, some stronger, some weaker.

Stationarity can also be defined by interval representation by requiring all X; to be indepen-
dent and identically distributed (IID). A weaker definition is that all first and second order
moments (e.g. the mean value and variance) of a point process must be invariant with respect
to time shifts. Erlang introduced the concept of statistical equilibrium, which requires that
the derivatives of the process with respect to time are zero.

5.2.2 Independence

This property can be expressed as the requirement that the future evolution of the process
only depends upon the present state.

Definition: The probability that & events (k is integer and > 0) take place in [t1,t + 5] is
independent of events before time ¢;

p{Nt2 — Nt1 = k|Nt1 — Nto = TL} = p{Nt2 — Nt1 = 1{7} (5].6)

If this holds for all ¢, then the process is a Markov process: the future evolution only depends
on the present state, but is independent of how this has been obtained. This is the lack of
memory property. If this property only holds for certain time points (e.g. arrival times), these
points are called equilibrium points or regeneration points. The process then has a limited
memory, and we only need to keep record of the past back the the latest regeneration point.

Example 5.2.1: Equilibrium points = regeneration points
Examples of point process with equilibrium points.

a) Poisson process is (as we will see in next chapter) memoryless, and all points of the time axes
are equilibrium points.

b) A scanning process, where scannings occur at a regular cycle, has limited memory. The latest
scanning instant has full information about the scanning process, and therefore all scanning
points are equilibrium points.
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c¢) If we superpose the above-mentioned Poisson process and scanning process (for instance by
investigating the arrival processes in a computer system), the only equilibrium points in the
compound process are the scanning instants.

d) Consider a queueing system with Poisson arrival process, constant service time and single
server. The number of queueing positions can be finite or infinite. Let a point process be
defined by the time instants when service starts. All time intervals when the system is idle,
will be equilibrium points. During periods, where the system is busy, the time points for
accept of new calls for service depends on the instant when the first call of the busy period
started service.

5.2.3 Simple point process

We have already mentioned (5.7) that we exclude processes with multiple arrivals.

Definition: A point process is called simple, if the probability that there are more than one
event at a given point is zero:

p{Nisar — N, > 2} = o(At) . (5.17)

With interval representation, the inter-arrival time distribution must not have a probability
mass (atom) at zero, i.e. the distribution is continuous at zero (3.1):

F0+)=0 (5.18)

Example 5.2.2: Multiple events
Time points of traffic accidents will form a simple process. Number of damaged cars or dead people
will be a non-simple point process with multiple events. O

5.3 Little’s theorem

This is the only general result that is valid for all queueing systems. It was first published by
Little (1961 [75]). The proof below was shown by applying the theory of stochastic process
in (Eilon, 1969 [21]).

We consider a queueing system, where customers arrive according to a stochastic process.
Customers enter the system at a random time and wait to get service, after being served
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they leave the system. In Fig. 5.2, both arrival and departure processes are considered as
stochastic processes with cumulated number of customers as ordinate.

We consider a time space T" and assume that the system is in statistic equilibrium at initial
time t = 0. We use the following notation (Fig. 5.2):

N(T) = number of arrivals in period T.

A(T) = the total service times of all customers in the period T’
= the shadowed area between curves
= the carried traffic volume.

NT) = @ = the average call intensity in the period T.
W(T) = % = mean holding time in system per call in the period T

L(r) = # = the average number of calls in the system in the period T

We have the important relation among these variables:

L(T) = = : = \T) - W(T) (5.19)

If the limits of A = limy_oo A(7') and W = limy_,. W(T) exist, then the limiting value of
L(T) also exists and it becomes:

L=X-W (Little’s theorem). (5.20)

This simple formula is valid for all general queueing system. The proof had been refined
during the years. We shall use this formula in Chaps. 12-14.

Example 5.3.1: Little’s formula
If we only consider the waiting positions, the formula shows:

The mean queue length is equal to call intensity multiplied by the mean waiting time.
If we only consider the servers, the formula shows:

The carried traffic is equal to arrival intensity multiplied by mean service time
(A=y-s=\p).

This corresponds to the definition of offered traffic in Sec. 2.1. O
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Figure 5.2: A queueing system with arrival and departure of customers. The vertical distance
between the two curves is equal to the actual number of customers being served. The cus-
tomers in general don’t depart in the the same order as they arrive, so the horizontal distance
between the curves don’t describe the actual time in the system of a customer.



104 CHAPTER 5. ARRIVAL PROCESSES



Chapter 6

The Poisson process

The Poisson process is the most important point process. Later we will realize that its
role among point processes is as fundamental as the role of the Normal distribution among
statistical distributions. By the central limit theorem we obtain the Normal distribution
when adding random variables. In a similar way we obtain the exponential distribution when
superposing stochastic point processes.

Most other applied point processes are generalisations or modifications of the Poisson process.
This process gives a surprisingly good description of many real-life processes. This is because
it is the most random process. The more complex a process is, the better it will in general
be modelled by a Poisson process.

Due to its great importance in practice, we shall study the Poisson process in detail in this
chapter. First (Sec. 6.2) we base our study on a physical model with main emphasis upon the
distributions associated to the process, and then we shall consider some important properties
of the Poisson process (Sec. 6.3). Finally, in Sec. 6.4 we consider the interrupted Poisson
process as an example of generalisation.

6.1 Characteristics of the Poisson process

The fundamental properties of the Poisson process are defined in Sec. 5.2:

a. Stationary,
b. Independent at all time instants (epochs), and

c. Simple.

(b) and (c) are fundamental properties, whereas (a) is unnecessary. Thus we may allow a
Poisson process to have a time-dependent intensity. From the above properties we may derive
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other properties that are sufficient for defining the Poisson process. The two most important
ones are:

e Number representation: The number of events within a time interval of fixed length is
Poisson distributed. Therefore, the process is named the Poisson process.

o Interval representation: The time distance X; (5.2) between consecutive events is ex-
ponentially distributed.

In this case using (4.8) and (4.10) Feller-Jensen’s identity (5.4) shows the fundamental rela-
tionship between the cumulated Poisson distribution and the Erlang distribution (Sec. 6.2.2):

< ()\t,)j e = /:O Do) e Mdr=1-F(t). (6.1)

g! — (n—=1)!

j=0
This formula can also be obtained by repeated partial integration.

6.2 Distributions of the Poisson process

In this section we consider the Poisson process in a dynamical and physical way (Fry, 1928 [30])
& (Jensen, 1954 [11]). The derivations are based on a simple physical model and concentrate
on the probability distributions associated with the Poisson process.

The physical model is as follows: Events (arrivals) are placed at random on the real axis in
such a way that every event is placed independently of all other events. So we put the events
uniformly and independently on the real axes.

The average density is chosen as A events (arrivals) per time unit. If we consider the axis
as a time axis, then on the average we shall have A arrivals per time unit. The probability
that a given arrival pattern occurs within a time interval is independent of the location of
the interval on the time axis.

(l) i‘<— t —>-‘ ! to ! Time

Figure 6.1: When deriving the Poisson process, we consider arrivals within two non-—
overlapping time intervals of duration t, and ty, respectively.

Let p(v,t) denote the probability that v events occur within a time interval of duration .
The mathematical formulation of the above model is as follows:

1. Independence: If t; and t, are two non—overlapping intervals (Fig. 6.1), we have because
of the independence assumption:

p(0,11) -p(0,t2) = p (0,61 +t2) - (6.2)
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2. The mean value of the time interval between two successive arrivals is 1/\ (3.4):

> 1 1
t)dt = — — . .
/0 pONdE=1,  0<y <o (6.3)

Here p(0,t) is the probability that there are no arrivals within the time interval (0, ),
which is identical to the probability that the time until the first event is larger than
t (the complementary distribution). The mean value (6.3) is obtained directly from
(3.4). Formula (6.3) can also be interpreted as the area under the curve p(0,t), which
is a never—increasing function decreasing from 1 to 0.

3. We notice that (6.2) implies that the event “no arrivals within the interval of length 0”

is sure to take place:
p(0,0) =1. (6.4)

4. We also notice that (6.3) implies that the probability of “no arrivals within a time
interval of length oo” is zero and never takes place:

p(0,00) = 0. (6.5)

6.2.1 Exponential distribution

The fundamental step in the following derivation of the Poisson distribution is to derive p(0, t)
which is the probability of no arrivals within a time interval of length ¢, i.e. the probability
that the first arrival appears later than ¢t. We will show that {1 — p(0,¢)} is an exponential
distribution (cf. Sec. 4.1).

From (6.2) we have:
Inp(0,t1) +Inp(0,t2) =Inp(0,t +t2) . (6.6)

Letting Inp(0,t) = f(t), (6.6) can be written as:
ft)+ f(t2)=f(ti+12) . (6.7)
By differentiation with respect to e.g. to we have:
fte) = fi, (t1+ ) .
From this we notice that f’(¢) must be a constant and therefore:
f(t) =a+0bt. (6.8)
By inserting (6.8) into (6.7), we obtain a = 0. Therefore p(0,t) has the form:

p(0,1) = e
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From (6.3) we obtain b:

or:

Thus on the basis of item (1) and (2) above we have shown that:
p(0,t) = e, (6.9)

If we consider p(0,t) as the probability that the next event arrives later than ¢, then the time
until next arrival is exponentially distributed (Sec. 4.1):

1—p(0,t)=F(t) = 1—e, A>0, t>0, (6.10)

F'(ty= f(t) = X-e ™, A>0, t>0. (6.11)

> =

ot = =. (6.12)

>l

The probability that the next arrival appears within the interval (¢,¢ + dt) may be written
as:

ft)ydt = Xe™Mdt
= p(0,t) \dt, (6.13)

i.e. the probability that an arrival appears within the interval (t,¢ + dt) is equal to Adt,
independent of t and proportional to dt (3.17).

Because ) is independent of the actual age t, the exponential distribution has no memory
(cf. Secs. 4.1 & 3.1.2). The process has no age.

The parameter A is called the intensity or rate of both the exponential distribution and of
the related Poisson process and it corresponds to the intensity in (5.6). The exponential
distribution is in general a very good model of call inter-arrival times when the traffic is
generated by human beings (Fig. 6.2).



6.2. DISTRIBUTIONS OF THE POISSON PROCESS 109

Number of observations
2000

e 5916 Observations
1000 = S

- ® = Theory

500

200 ©
100 4

20
10 ©

1 T T T T T \
0 4 8 12 16 20

Inter—arrival time [scan=0.2s]

Figure 6.2: Inter—arrival time distribution of calls at a transit exchange. The theoretical values
are based on the assumption of exponentially distributed inter—arrival times. Due to the
measuring principle (scanning method) the continuous exponential distribution is transformed
into a discrete Westerberg distribution (15.14) (x*-test = 18.86 with 19 degrees of freedom,
percentile = 53).

6.2.2 FErlang—k distribution

From the above we notice that the time until exactly £ arrivals have appeared is a sum of k
IID (independently and identically distributed) exponentially distributed random variables.

The distribution of this sum is an Erlang—k distribution (Sec. 4.2) and the density is given
by (4.8):

(M),

gk(t)dt:)\(k_l)!e ,

A>0, t>0, k=1,2,.... (6.14)

For k = 1 we of course get the exponential distribution. The distribution gx1(t), & > 0, is
obtained by convolving gx(t) and g;(t). If we assume that the expression (6.14) is valid for
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gr(t), then we have by convolution:

genn(t) = / gu(t—1) g (z) da

_ t/\ {)‘(t — x)}kil e—)\(t—:n) /\e—Ax dt

)\k+1 At ! k—1
At)F
= A.%.e)‘t_

As the expression is valid for £k = 1, we have by induction shown that it is valid for any k.
The Erlang-£ distribution is, from a statistical point of view, a special gamma-distribution.

The mean value and the variance are obtained from (6.12):

ok
1 — )\7
k
O'2 = ﬁ’ (615)
— 14
g = k}

Example 6.2.1: Call statistics from an SPC-system (cf. Example 5.1.2)

Let calls arrive to a stored program—controlled telephone exchange (SPC-system) according to a
Poisson process. The exchange automatically collects full information about every 1000’th call. The
inter-arrival times between two registrations will then be Erlang—1000 distributed and have the form
factor € = 1.001, i.e. the registrations will take place very regularly. O

6.2.3 Poisson distribution

We shall now show that the number of arrivals in an interval of fixed length ¢ is Poisson
distributed with mean value \t. When we know the above-mentioned exponential distribution
and the Erlang distribution, the derivation of the Poisson distribution is only a matter of
applying simple combinatorics. The proof can be carried through by induction.

We want to derive p(i,t) = probability of ¢ arrivals within a time interval t. Let us assume

that: Ayt
t)i-
éj1yf”5 A>0, i=12,...

p(i - 17t) =
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This is correct for i = 0 (6.9). The interval (0,t) is divided into three non-overlapping
intervals (0,¢1), (t1,t; + dty) and (¢; + dtq,t). From the earlier independence assumption we
know that events within an interval are independent of events in the other intervals, because
the intervals are non—overlapping. By choosing ¢; so that the last arrival within (0,¢) appears
in (t1,t; + dt;), then the probability p(7,t) is obtained by the integrating over all possible
values of #; as a product of the following three probabilities:

a) The probability that (¢ — 1) arrivals occur within the time interval (0, ¢;):

(M)
(i—1)

b) The probability that there is just one arrival within the time interval from ¢; to t; + di;:

p(i—1,t) = ce A 0<t; <t.

Adt; .

c) The probability that no arrivals occur from ¢; + dt; to t:

e—)\(t—tl) .

The product of the first two probabilities is the probability that the i’th arrival appears in
(t1,t; + dty), i.e. the Erlang distribution from the previous section.

By integration we have:

t At i—1
plit) = / A0 om0t )ty ot
0 .

p(i,t) = —=-e . (6.16)

This is the Poisson distribution which we thus have obtained from (6.9) by induction. The
mean value and variance are:

m; = A-t, (6.17)
o = \-t. (6.18)
The Poisson distribution is in general a very good model for the number of calls in a telecom-

munication system (Fig. 6.3) or jobs in a computer system.

Example 6.2.2: Slotted Aloha Satellite System
Let us consider a digital satellite communication system with constant packet length h. The satellite
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Figure 6.3: Number of Internet dial-up calls per second. The theoretical values are based
on the assumption of a Poisson distribution. A statistical test accepts the hypothesis of a
Poisson distribution.

is in a geostationary position about 36.000 km above equator, so the round trip delay is about 280
ms. The time axes is divided into slots of fixed duration corresponding to the packet length h.
The individual terminal (earth station) transmits packets so that they are synchronised with the
time slots. All packets generated during a time slot are transmitted in the next time-slot. The
transmission of a packet is only correct if it is the only packet being transmitted in a time slot. If
more packets are transmitted simultaneously, we have a collision and all packets are lost and must
be retransmitted. All earth stations receive all packets and can thus decide whether a packet is
transmitted correctly. Due to the time delay, the earth stations transmit packets independently. If
the total arrival process is a Poisson process (rate \), then we get a Poisson distributed number of
packets in each time slot.

p(i) = (R)' e M, (6.19)

The probability of a correct transmission is:
p(1) = M- e M, (6.20)

This corresponds to the proportion of the time axes which is utilised effectively. This function,
which is shown in Fig. 6.4, has an optimum for Ah = 1, as the derivative with respect to Ah is zero
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for this value:
Phn(l) =e M (1= An), (6.21)
Max{p(1)} = e~! = 0.3679. (6.22)

We thus have a maximum utilisation of the channel equal to 0.3679, when on the average we transmit
one packet per time slot. A similar result holds when there is a limited number of terminals and
the number of packets per time slot is Binomially distributed. O

Carried traffic
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Figure 6.4: The carried traffic in a slotted Aloha system has a maximum (example 6.2.2).
The Simple Aloha protocol is dealt with in example 7.2.1.

6.2.4 Static derivation of the distributions of the Poisson process

As it is known from statistics, these distributions can also be derived from the Binomial
process by letting the number of trials n (e.g. throws of a die) increase to infinity and at the
same time letting the probability of success in a single trial p converge to zero in such a way
that the average number of successes n - p is constant.

This approach is static and does not stress the fundamental properties of the Poisson process
which has a dynamic independent existence. But it shows the relationship between the two
processes as illustrated in Table 6.1.
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The exponential distribution is the only continuous distribution with lack of memory, and the
geometrical distribution is the only discrete distribution with lack of memory. For example,
the next outcome of a throw of a die is independent of the previous outcome. The distributions
of the two processes are shown in Table 6.1.

6.3 Properties of the Poisson process

In this section we shall show some fundamental properties of the Poisson process. From
the physical model in Sec. 6.2 we have seen that the Poisson process is the most random
point process that may be found (maximum disorder process). It yields a good description
of physical processes when many different factors are behind the total process.

6.3.1 Palm’s theorem (Superposition theorem)

The fundamental properties of the Poisson process among all other point processes were first
discussed by the Swede Conny Palm. He showed that the exponential distribution plays the
same role for stochastic point processes (e.g. inter—arrival time distributions), where point
processes are superposed, as the Normal distribution does when stochastic variables are added
up (the central limit theorem).
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Random point of time

Figure 6.5: By superposition of n point processes we obtain under certain assumptions a
process which locally is a Poisson process.
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POISSON PROCESS
Continuous time
Intensity of succes: A\,

BINOMIAL PROCESS
Discrete time

Probability of success: p, A>0

O<p<l1

Number of attempts since previous success or
since a random attempt to get a success

Interval between two successes or from
a random point until next success

GEOMETRIC DISTRIBUTION

pn)=p-1—-p"t, n=12...

mp=—,
p p

EXPONENTIAL DISTRIBUTION

Number of attempts to get k successes

Time interval until £'th success

PASCAL = NEGATIVE BINOMIAL DISTR.

n—1

o) = (17 1)tz

mi = s g~ =

ERLANG-K DISTRIBUTION

ftlk) =

Number of successes in n attempts

Number of successes in a time interval ¢

BINOMIAL DISTRIBUTION

p(z[n) = (Z)pm(l—p)"z, z=0,1,...

2

my=pn, o° =pn-(1-p)

POISSON DISTRIBUTION

Table 6.1: Correspondence between the distributions of the Binomial process and the Poisson
process. A success corresponds to an event or an arrival in a point process. Mean value =
mu, variance = o2. For the geometric distribution we may start with a zero class. The mean
value is then reduced by one whereas the variance is the same.
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Theorem 6.1 Palm’s theorem: by superposition of many independent point processes the
resulting total process will locally be a Poisson process.

The term”locally” means that we consider time intervals which are so short that each process
contributes at most with one event during this interval. This is a natural requirement since
no process may dominate the total process (similar conditions are assumed for the central
limit theorem). The theorem is valid only for simple point processes. If we consider a random
point of time in a certain process, then the time until the next arrival is given by (3.23).

We superpose n processes into one total process. By appropriate choice of the time unit
the mean distance between arrivals in the total process is kept constant, independent of n.
The time from a random point of time to the next event in the total process is then given

by (3.23):
p{Tgt}zl—ﬁ{l—Vi<%)}. (6.23)

i=1

If all sub-processes are identical, we get:

p{Tgt}zl—{l—V(%)}n. (6.24)

From (3.23) and (5.18) we find (letting p = 1):

lim v(At) =1,
At—0

and thus: A
V(At) = / 1dt = At. (6.25)
0

Therefore, we get from (6.24) by letting the number of sub-processes increase to infinity:

s - g (-3)]

= l—e". (6.26)

which is the exponential distribution. We have thus shown that by superposition of identical
processes we locally get a Poisson process. In a similar way we may superpose non-identical
processes and obtain a Poisson process locally.

Example 6.3.1: Life-time of a route in an ad-hoc network

A route in a network consists of a number of links connecting the end-points of the route (Chap. 11).
In an ad-hoc network links exist for a limited time period. The life-time of a route is therefore the
time until the first link is disconnected. From Palm’s theorem we see that the life-time of the route
tends to be exponentially distributed. O
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6.3.2 Raikov’s theorem (Decomposition theorem)

A similar theorem, the decomposition theorem, is valid when we split a point process into
sub-processes, when this is done in a random way. If there are n times fewer events in a
sub-process, then it is natural to reduce the time axes with a factor n.

Theorem 6.2 Raikov’s theorem: by a random decomposition of a point process into sub-
processes, the individual sub-process converges to a Poisson process, when the probability that
an event belongs to the sub-process tends to zero.

This is also seen from the following general result. If we generate a sub-process by random
splitting of a point process choosing an event with probability p, then the sub-process has
the formfactor ¢,:

810:2+p'<5_2)7

where ¢ is the form factor of the original process.

In addition to superposition and decomposition (merge and split, or join and fork), we can
make another operation on a point process, namely translation (displacement) of the indi-
vidual events. When this translation for every event is a random variable, independent of all
other events, an arbitrary point process will converge to a Poisson process.

As concerns point processes occurring in real-life, we may, according to the above, expect
that they are Poisson processes when a sufficiently large number of independent conditions
for having an event are fulfilled. This is why the Poisson process is a good description of for
instance the arrival processes to a local exchange from all local subscribers.

As an example of limitations in Palm’s theorem (Theorem 6.1) it can be shown that the
superposition of two independent processes yields an exact Poisson process only if both sub—
processes are Poisson processes.

6.3.3 Uniform distribution — a conditional property

In Sec. 6.2 we have seen that a uniform distribution in a very large interval corresponds to a
Poisson process. The inverse property is also valid:

Theorem 6.3 If for a Poisson process we have n arrivals within an interval of duration t,
then these arrivals are uniformly distributed within this interval.

The length of this interval can itself be a random variable if it is independent of the Poisson
process. This is for example the case in traffic measurements with variable measuring intervals
(Chap. 15). This can be shown both from the Poisson distribution (number representation)
and from the exponential distribution (interval presentation).
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Channels

Figure 6.6: Overflow system with Poisson arrival process (intensity A). Normally, calls arrive
to the primary group. During periods when all n trunks in the primary group are busy, all
calls are offered to the overflow group.



6.4. GENERALISATION OF THE STATIONARY POISSON PROCESS 119

6.4 Generalisation of the stationary Poisson process

The Poisson process has been generalised in many ways. In this section we only consider
the interrupted Poisson process, but further generalisations are MMPP (Markov Modulated
Poisson Processes) and MAP (Markov Arrival Processes).

6.4.1 Interrupted Poisson process (IPP)

Due to its lack of memory the Poisson process is very easy to apply. In some cases, however,
the Poisson process is not sufficient to describe a real arrival process as it has only one
parameter. Kuczura (1973 [70]) proposed a generalisation which has been widely used.

The idea of generalisation comes from the overflow problem (Fig. 6.6 & Sec. 9.2). Customers
arriving at the system will first try to be served by a primary system with limited capacity
(n servers). If the primary system is busy, then the arriving customers will be served by
the overflow system. Arriving customers are routed to the overflow system only when the

(on) !
g

IPP arrival process
A
: Switch
Poisson process
A
ff

o
,U Arrivals ignored

Figure 6.7: Illustration of the interrupted Poisson process (IPP) (cf. Fig. (6.6)). The position
of the switch is controlled by a two-state Markov process.

primary system is busy. During the busy periods customers arrive at the overflow system
according to the Poisson process with intensity A. During the non-busy periods no calls arrive
to the overflow system, i.e. the arrival intensity is zero. Thus we can consider the arrival
process to the overflow system as a Poisson process which is either On or Off (Fig. 6.7). As a
simplified model to describe these On (Off) intervals, Kuczura used exponentially distributed
time intervals with intensity v (w ). He showed that this corresponds to hyper-exponentially
distributed inter—arrival times to the overflow link, which are illustrated by a phase—diagram
in Fig 6.8. It can be shown that the parameters are related as follows:

A= p)\1+(1_p))\27
ANw = A, (6.27)

)\‘F’Y"i‘(d = )\1+)\2.
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A

I—p

A2

Figure 6.8: The interrupted Poisson process is equivalent to a hyper—exponential arrival
process (6.27).

Because a hyper—exponential distribution with two phases can be transformed into a Cox—2
distribution (Sec. 4.4.2), the IPP arrival process is a Cox-2 arrival processes as shown in
Fig. 4.10. We have three parameters available, whereas the Poisson process has only one
parameter. This makes it more flexible for modelling empirical data.



Chapter 7

Erlang’s loss system and B—formula

In this and the following chapters we consider the classical teletraffic theory developed by
Erlang (Denmark), Engset (Norway) and Fry & Molina (USA). It has successfully been
applied for more than 80 years. In this chapter we consider the fundamental Erlang-B formula.
In Sec. 7.1 we put forward the assumptions for the model. Sec. 7.2 deals with the case with
infinite capacity, which results in a Poisson distributed number of busy channels. In Sec. 7.3
we consider a limited number of channels and obtain the truncated Poisson distribution and
Erlang’s B-formula. In Sec. 7.4 we describe a standard procedure (cook book) for dealing
with state transition diagrams. This is the key to classical teletraffic theory. We also derive
an accurate recursive formula for numerical evaluation of Erlang’s B-formula in Sec. 7.5.
Finally, in Sec. 7.6 we study the basic principles of dimensioning, where we balance the
Grade—of-Service (GoS) and the costs of the system.

7.1 Introduction

Erlang’s B-formula is based on the following model, described by the three elements structure,
strategy, and traffic(Fig. 1.1):

a. Structure: We consider a system of n identical channels (servers, trunks, slots) working
in parallel. This is called a homogeneous group.

b. Strategy: A call arriving at the system is accepted for service if at least one channel
is idle. Every call needs one and only one channel. We say the group has full accessi-
bility. Often the term full availability is used, but this terminology will only be used
in connection with reliability aspect. If all channels are busy the system is congested
and a call attempt is blocked. It The blocked (= rejected, lost, congested) call attempt
disappears without any after-effect as it may be accepted by an alternative route. This
strategy is the most important one and has been applied with success for many years.
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It is called Erlang’s loss model or the Lost Calls Cleared = LCC-model.

c. Traffic: In the following we assume that the service times are exponentially distributed
with intensity u (corresponding to a mean value 1/u), and that the arrival process is
a Poisson process with rate A\. This type of traffic is called Pure Chance Traffic type
One, PCT-I. The traffic process then becomes a pure birth and death process, a simple
Markov process which is easy to deal with mathematically.

Definition of offered traffic: We define the offered traffic as the traffic carried when the
number of channels (the capacity) is infinite (2.2). In Erlang’s loss model with Poisson
arrival process this definition of offered traffic is equivalent to the average number of
call attempts per mean holding time:

A

A=x = (7.1)

1
1
We consider two cases:

1. n = oo: Poisson distribution (Sec. 7.2),

2. n < oo: Truncated Poisson distribution (Sec. 7.3).

We shall later see that this model is insensitive to the holding time distribution, i.e. only the
mean holding time is of importance for the state probabilities. The type of distribution has
no importance for the state probabilities.

Performance-measures: The most important grade-of-service measures for loss systems are
time congestion E, call congestion B, and traffic (load) congestion C'. They are all equal for
Erlang’s loss model because of the Poisson arrival process (PASTA—property, Sec. 6.3).

7.2 Poisson distribution

We assume the arrival process is a Poisson process and that the holding times are exponen-
tially distributed, i.e. we consider PCT-I traffic. The number of channels is assumed to be
infinite, so we never observe congestion (blocking).

7.2.1 State transition diagram

We define the state of the system, [i], as the number of busy channels i (i = 0,1,2,...).
In Fig. 7.1 all states of the system are shown as circles, and the rates by which the traffic
process changes from one state to another state are shown upon the arcs of arrows between
the states. As the process is simple (Sec. 5.1), we only have transitions to neighbouring states.
If we assume the system is in statistical equilibrium, then the system will be in state [7] the
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Figure 7.1: The Poisson distribution. State transition diagram for a system with infinitely
many channels, Poisson arrival process (), and exponentially distributed holding times ().

proportion of time p(i), where p(7) is the probability of observing the system in state [i] at
a random point of time, i.e. a time average. When the process is in state [4] it will jump to
state [i+1] A times per time unit and to state [i—1] i u times per time unit. Of course, the
process will leave state [i] at the moment there is a state transition. The future development
of the traffic process only depends upon the present state, not upon how the process came to
this state (the Markov-property).

The equations describing the states of the system under the assumption of statistical equi-
librium can be set up in two ways, which both are based on the principle of global balance:

a. Node equations
In statistical equilibrium the number of transitions per time unit into state [i]| equals
the number of transitions out of state [i]. The equilibrium state probability p(i) denotes
the proportion of time (total time per time unit) the process is in state [ ]. The average
number of jumps from state [0] to state [1]is A - p(0) per time unit, and the average
number of jumps from state [1] to state [0] is p - p(1) per time unit. For state [¢] we
get the following equilibrium or balance equation:

A-p(0) = p-p(1), i=0, (7.2)
Aeplim1)+ (i + ) p-plitl) = A+ip)-pli), i>0. (7.3)

The node equations are always applicable, also for state transition diagrams in several
dimensions, which we consider in later chapters.

b. Cut equations
In many cases we may exploit a simple structure of the state transition diagram. If
we put a fictitious cut for example between the states [i—1] and [i] (corresponding
to a global cut around the states [0],[1],...[i—1]), then in statistical equilibrium the
traffic process changes from state [i—1] to [¢] the same number of times as it changes
from state [i] to [¢—1]. In statistical equilibrium we thus have per time unit:

Apli—1)=ip-p(i), i=1,2,.... (7.4)

Cut equations are primarily used for one-dimensional state transition diagrams, whereas
node equations are applicable to any diagram.
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As the system always will be in some state, we have the normalisation restriction:
dopliy=1,  pi) =0. (7.5)
i=0

We notice that node equations (7.3) involve three state probabilities, whereas the cut equa-
tions (7.4) only involve two. Therefore, it is easier to solve the cut equations. Loss system
will always be able to enter statistical equilibrium if the arrival process is independent of
the state of the system. We shall not consider the mathematical conditions for statistical
equilibrium in this chapter.

7.2.2 Derivation of state probabilities

For one-dimensional state transition diagrams the application of cut equations is the most
appropriate approach. From Fig. 7.1 we get the following balance equations:

A-p(0) = p-p(l),

Ap(l) = 2p-p(2),

Ap(i=2) = (i—1)p-p(i-1),
Ap(i=1) = dip-p(i),

Aop(i) = (i+1)p-plitl),

Expressing all state probabilities by p(0) yields, when we introduce the offered traffic A =
A
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p(0) - (),
(1) = A0).
2 = Soam = S0,
‘ Ai—l
p(i=1) = —5-p(i=2) = i1 p(0),
i) = Doty = A0,
Pt = Zpl) =y plO),

The normalisation constraint (7.5) implies:

1 = ip(j)

p(0) = e,
and thus the Poisson distribution:
pi)=2 e, i=0,1,2,.... (7.6)

The number of busy channels at a random point of time is thus Poisson distributed with both
mean value (6.17) and variance (6.18) equal to A. We have earlier shown that the number of
calls in a fixed time interval also is Poisson distributed (6.16). Thus the Poisson distribution
is valid both in time and in space. We would, of course, obtain the same solution by using
node equations.
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7.2.3 Traffic characteristics of the Poisson distribution

From a dimensioning point of view, the system with unlimited capacity is not very interesting.
We summarise the important traffic characteristics of the loss system:

Time congestion: E = 0,

Call congestion: B = 0,

Carried traffic: Y = Zz p(i) = A,
i=1

Lost traffic: Ay = A-Y =0,

Traffic congestion: C = 0

Carried traffic by the ¢’th trunk assuming sequential hunting is given later in (7.14).

Peakedness Z is defined as the ratio between variance and mean value of the distribution of
state probabilities (cf. IDC, Index of Dispersion of Counts). For the Poisson distribution we
find (6.17) & (6.18):

o

7 =__=1. 7.7

- (7.7
The peakedness has dimension [number of channels| and is different from the coefficient of
variation which has no dimension (3.9).

Duration of state [i]:

In state [i] the process has the total intensity (A + ipu) away from the state. Therefore,
the time until the first transition (state transition to either i+1 or i —1) is exponentially
distributed (Sec. 4.1.1):

) =\ +ipe ATt s

Example 7.2.1: Simple Aloha protocol

In example 6.2.2 we considered the slotted Aloha protocol, where the time axes was divided into
time slots. We now consider the same protocol in continuous time. We assume that packets arrive
according to a Poisson process and that they are of constant length h. The system corresponds
to the traffic case resulting in a Poisson distribution which also is valid for constant holding times
(Sec. 7.2). The state probabilities are given by the Poisson distribution (7.6) where A = Ah. A
packet is only transmitted correctly if (a) the system is in state [0] at the arrival time and (b) no
other packets arrive during the service time h. We find:

“\h 24
Peorrect = P(0) - e =e .

The traffic transmitted correctly thus becomes:

—2A
Acorrect = A Peorrect = A€ .
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This is the proportion of the time axis which is utilised efficiently. It has an optimum for Ah = A =
1/2, where the derivative with respect to A equals zero:

aAcorrect _ —2A
9A =e (1-2A4),

1
max{Acorrect} = % = 0.1839. (7.8)

We thus obtain a maximum utilisation equal to 0.1839 when we offer 0.5 erlang. This is half the
value we obtained for a slotted system by synchronising the satellite transmitters. The models are
compared in Fig. 6.4. O

7.3 Truncated Poisson distribution

We still assume Pure Chance Traffic Type I (PCT-I) as in Sec. 7.2. The number of channels
is now limited so that n is finite. The number of states becomes n+ 1, and the state transition
diagram is shown in Fig. 7.2.

)\ A
C@\/ g0
(i+1)p ny

Figure 7.2: The truncated Poisson distribution. State transition diagram for a system with
a limited number of channels (n), Poisson arrival process (\), and exponential service times

(w)-

7.3.1 State probabilities

We get similar cut equations as for the Poisson case, but the state space is limited to

{0,1,...,n} and the normalisation condition (7.5) now becomes:
n A] -1
pO)=9> S -
=0 /'

We get the so-called truncated Poisson distribution (Erlang’s first formula):
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The name truncated means cut off and is due to the fact that the solution may be interpreted
as a conditional Poisson distribution p(i|i < n). This is easily seen by multiplying both

numerator and denominator by e™4.

7.3.2 Traffic characteristics of Erlang’s B-formula

Knowing the state probabilities we are able to find performance measures defined by state
probabilities.

Time congestion:

The probability that all n channels are busy at a random point of time is equal to the
proportion of time all channels are busy (time average). This is obtained from (7.9) for
1=n:

ATL

n!
1+ A+ 4+ —
2! n!

This is Erlang’s famous B-formula (1917, [11]). It is denoted by E,(A) = Ey,(A), where
index “one” refers to the alternative name Erlang’s first formula.

Call congestion:

The probability that a random call will be lost is equal to the proportion of call attempts
blocked. If we consider one time unit, we find B = B, (A):

A-p(n)

> Ap)

B= = p(n) = E,(A). (7.11)

Carried traffic:

If we use the cut equation between states [i—1] and [i] we get:

n n

y - Zi.p(i)zzg.p(i—n:/x-{l—p(n)},

i=1 i=1
Y = A-{1-E,(A)}, (7.12)
where A is the offered traffic. The carried traffic will be less than both A and n.

Lost traffic:
Ay=A-Y =A-E,(A).

Traffic congestion:
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We thus have £ = B = C because the call intensity is independent of the state. This is
the PASTA-property which is valid for all systems with Poisson arrival processes: Poisson
Arrivals See Time Averages. In all other cases at least two of the three congestion measures
are different. Erlang’s B-formula is shown graphically in Fig. 7.3 for some selected values of
the parameters.

Traffic carried by the i’th channel (the utilisation a;) :

1. Random hunting: In this case all channels carry the same traffic on the average. The
total carried traffic is independent of the hunting strategy and we find the utilisation:

Y _ A EB(4)

(7.13)

a; = a
This function is shown in Fig. 7.4, and we observe that for a given congestion £ we

obtain the highest utilisation for large channel groups (economy of scale).

2. Ordered hunting = sequential hunting: The traffic carried by channel i is the difference
between the traffic lost from ¢—1 channels and the traffic lost from ¢ channels:

a; = A-{Ei_1(A) — Ej(A)} . (7.14)

It should be noticed that the traffic carried by channel ¢ is independent of the total
number of channels. Thus channels after channel ¢ have no influence upon the traffic
carried by channel 7. There is no feed-back.

Improvement function:

This denotes the increase in carried traffic when the number of channels is increased by one
from n to n + 1:

Fn(A) = Yn—l—l_Yna

= A{1-E,..} —A{1-E,}, (7.15)
F,(A) = A{E.(A) — Ex1(A)} (7.16)
We have:
0<F,(A)<1.

The improvement function F,(A) is tabulated in Moe’s Principle (Arne Jensen, 1950 [50])
and shown in Fig. 7.5. In Sec. 7.6.2 we consider the application of this principle for optimal
economic dimensioning.

Peakedness:
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This is defined as the ratio between the variance and the mean value of the distribution of
the number of busy channels, cf. IDC (5.11). For the truncated Poisson distribution by using
(7.14) it can be shown that:

0_2

Z=—=1-A{E,1(A) - E, (A} =1-a,, (7.17)
m
The dimension is [number of channels]. In a group with ordered hunting we may thus estimate
the peakedness from the traffic carried by the last channel.

Duration of state [i]:

The total intensity for leaving state [i] is constant and equal to (A + iu), and therefore
the duration of the time in state [7] (sojourn time) is exponentially distributed with density
function:

L) = (+ip e ATt g<ion,

fult) = (n,u)-e_(n”)t, i=n. (7.18)

7.3.3 Generalisations of Erlang’s B-formula

The literature on the B—formula is very extensive. Here we only mention a couple of important
properties.

Insensitivity:

It can be shown that Erlang’s B-formula, which above is derived under the assumption of
exponentially distributed holding times, is valid for arbitrary holding time distributions.
The state probabilities for both the Poisson distribution (7.6) and the truncated Poisson
distribution (7.9) only depend on the holding time distribution through the mean value
which is included in the offered traffic A. It can be shown that all classical loss systems with
full accessibility are insensitive to the holding time distribution.

The fundamental assumption for the validity of Erlang’s B-formula is thus a Poisson arrival
process. According to Palm’s theorem this is fulfilled when the traffic is originated by many
independent sources. This is fulfilled in ordinary telephone systems under normal traffic
conditions. The formula is thus very robust. The combined arrival process and service time
process are described by a single parameter A. This explains the wide application of the
B-formula both in the past and today.

Continuous number of channels:

Erlang’s B—formula can mathematically be generalised to non-integral number of channels
(including a negative number of channels). This is useful when for instance we want to find
the number of channels n for a given offered traffic A and blocking probability £. In Chap. 9
we will also use this for dealing with overflow traffic.
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Figure 7.3: Blocking probability E,(A) as a function of the offered traffic A for various values

of the number of channels n (7.9).
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Figure 7.4: The average utilisation per channel a (7.13) as a function of the number of
channels n for given values of the congestion E.
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Figure 7.5: Improvement function F, (A) (7.16) of Erlang’s B-formula. By sequential hunting
F,(A) equals the traffic a, carried on channel number (n + 1).
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7.4 General procedure for state transition diagrams

The most important tool in teletraffic theory is formulation and solution of models by means
of state transition diagrams. From the previous sections we identify the following standard
procedure for dealing with state transition diagrams. It consists of a number of steps and
is formulated in general terms. The procedure is also applicable for multi-dimensional state
transition diagrams, which we consider later. We always go through the following steps:

a. Construction of the state transition diagram.

— Define the states of the system in an unique way,
— Draw the states as circles,

— Consider the states one at a time and draw all possible arrows for transitions away
from the state due to

% the arrival process (new arrival or phase shift in the arrival process),
* the departure (service) process (the service time terminates or shifts phase).

In this way we obtain the complete state transition diagram.
b. Set up the equations describing the system.

— If the conditions for statistical equilibrium are fulfilled, the steady state equations
can be obtained from:

* node equations (general),
* cut equations.

c. Solve the balance equations assuming statistical equilibrium.

— Express all state probabilities by for example the probability of state [0], p(0).
— Find p(0) by normalisation.

d. Calculate the performance measures expressed by the state probabilities.

In practise, we let the non-normalised value of the state probability ¢(0) equal to one, and
then calculate the relative values ¢(i), (i = 1,2,...). By normalising we then find:

p(i):%, i=0,1,...,n, (7.19)

where

Qn=> aq(v). (7.20)

The time congestion becomes:

pln) = 4 e (7.21)
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7.4.1 Recursion formula

If q(i) becomes very large (e.g. 10'°), then we may multiply all ¢(z) by the same constant (e.g.
1071%) as we know that all probabilities are within the interval [0,1]. In this way we avoid
numerical problems. If ¢(7) becomes very small, then we may truncate the state space as the
density function of p(i) often will be bell-shaped (unimodal) and therefore has a maximum.
In many cases we are theoretically able to control the error introduced by truncating the
state space (Stepanov, 1989 [91]).

We may normalise after every step which implies more calculations, but ensures a high ac-
curacy. Let the normalized state probabilities for at system with z—1 channels be given by:

P,y =A{psa(z—1), pp1(x=2),...,p:1(0)}, xz=1,2,..., (7.22)

where index (r—1) indicates that it is state probabilities for a system with (z—1) channels.
Let us assume we have the following recursion for ¢,(x) given by some function of previous
state probabilities:

Ge(z) = f{pe_1(x=1), ppo1(z—2),...,p.-1(0)}, z=1,2,..., (7.23)

where ¢,(x) will be a relative state probability. Assuming we know the normalised state
probabilities for (z—1) channels (7.22) we want to find the normalised state probabilities for
a system with x channels. The relative values of state probabilities do not change when we
increase number of channels by one, so we get:

Pe-1(7), i=0,1,2,...,0—1,

G (i) = { , (7.24)

fApea(x—=1),pp1(x=2),...,p12(0)}, i=1z.

The new normalisation constant becomes:
i=0

as we in the previous step normalised the sum of state probabilities ranging from 0 to x—1
so they add to one. We thus get:

Pa—1(1)
1+ . ()
()
1+ go(z)

. i=0,1,2,...,0—1,

pa(1) = (7.25)

The initial value for the recursion is given by po(0) = 1. The recursion algorithm thus start
with this value and find the state probabilities of a system with one channel more by (7.24)
and (7.25). The recursion is numerically very stable because we in (7.25) divide with a
number greater than one.
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Let us consider a simple birth & death process with arrival rate A\; and departure rate 7 p in
state i. Then ¢,(x) only depends on the previous state probability. By using the cut equation
we get the following recursion formula:

= “Pe_1(x—1). 7.26
L peafe =1 (7.2
The time congestion for x channels is E,(A) = p.(z). Inserting (7.26) into (7.25) we get a
simple recursive formula for the time congestion:

)\1:71
D
1 + C_Ix(m) 1 + ;;1 : Ea:—l

Introducing the inverse time congestion probability I, = E,; ! we get:
T K
)\a:—l

This is a general recursion formula for calculating time congestion for all systems with state
dependent arrival rates \; and homogeneous servers.

L=1+-"2 .1, Iy=1. (7.28)

Example 7.4.1: Calculating probabilities of the Poisson distribution

If we want to calculate the Poisson distribution (7.6) for very large mean values m; = A = \/p,
then it is advantageously to let ¢(m) = 1, where m is equal to the integral part of (m; 4+ 1). The
relative values of ¢(¢) for both decreasing values (i = m—1,m—2,...,0) and for increasing values
(i =m+1,m+2,...) will then be decreasing, and we may stop the calculations when for example
q(i) < 1072% and finally normalise ¢(i). In practice there will be no problems by normalising the
probabilities. A more strict approach is to use the above recursion formula. O

7.5 Evaluation of Erlang’s B-formula

For numerical calculations the formula (7.10) is not very appropriate, since both n! and A™
increase quickly so that overflow in the computer will occur. If we apply (7.27), then we get
the recursion formula:

o A- E171<A)
Bald) =3 +A-E, 1(A)’

Ey(A)=1. (7.29)

From a numerical point of view, the linear form (7.28) is the most stable:
L(A) =1+ % La(A),  IA) =1, (7.30)

where I,,(A) = 1/E,,(A). This recursion formula is exact, and even for large values of (n, A)
there are no round off errors. It is the basic formula for numerous tables of the Erlang B-
formula, i.a. the classical table (Palm, 1947 [21]). For very large values of n there are more
efficient algorithms. Notice that a recursive formula, which is accurate for increasing index,
usually is inaccurate for decreasing index, and vice versa.
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Example 7.5.1: Erlang’s loss system

We consider an Erlang-B loss system with n = 6 channels, arrival rate A = 2 calls per time unit,
and departure rate p = 1 departure per time unit, so that the offered traffic is A = 2 erlang. If
we denote the non-normalised relative state probabilities by ¢(i), we get by setting up the state
transition diagram the values shown in the following table:

g A(9) p(@) | q(i) p(i) i-p(@) | A@@)-p(d)

0 2 0 1.0000 | 0.1360 | 0.0000 0.2719

1 2 1 2.0000 | 0.2719 | 0.2719 0.5438

2 2 2 2.0000 | 0.2719 | 0.5438 0.5438

3 2 3 1.3333 | 0.1813 | 0.5438 0.3625

4 2 4 0.6667 | 0.0906 | 0.3625 0.1813

5 2 5 0.2667 | 0.0363 | 0.1813 0.0725

6 2 6 0.0889 | 0.0121 | 0.0725 0.0242
Total 7.3556 | 1.0000 | 1.9758 2.0000

We obtain the following blocking probabilities:

Time congestion: Es(2) = p(6)=0.0121.

A-Y _ 2 —1.9758  0.0121 .

Traffic congestion: Cs(2) =

A 2
6
Call congestion: Bs(2) = {A(6)-p(6)} /{Z A7) p(z)} = % =0.0121 .
i=0 '

We notice that £ = B = C due to the PASTA—property.
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By applying the recursion formula (7.29) we of course obtain the same results:

Ey(2) = 1,
2.1 2
B@) = 5373
2-2 2
Ex(2) = —u=1,
2+2-2 5
2.2 4
E3(2) = 52:77
3+42-2 19
2.4 2
_ 19 _
19
2.2 4
_ 21 _
Es(2) = 5+2.2 109’
21
9.4
E¢(2) = 109 —— =0.0121.

Example 7.5.2: Calculation of E;(A) for large x
By recursive application of (7.30) we find:

xz(z—1) x!

L(A)=1+2+ ot

A A?
which of course is the inverse blocking probability of the B-formula. For large values of x and A
this formula can be applied for fast calculation of the B-formula, because we can truncate the sum
when the terms become very small. O

7.6 Principles of dimensioning

When dimensioning service systems we have to balance grade-of-service requirements against
economic restrictions. In this chapter we shall see how this can be done on a rational ba-
sis. In telecommunication systems there are several measures to characterise the service
provided. The most extensive measure is Quality-of-Service (QoS), comprising all aspects
of a connection as voice quality, delay, loss, reliability etc. We consider a subset of these,
Grade-of-Service (GoS) or network performance, which only includes aspects related to the
capacity of the network.
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By the publication of Erlang’s formula there was already before 1920 a functional relationship
between number of channels, offered traffic, and grade-of-service (blocking probability) and
thus a measure for the quality of the traffic. At that time there were direct connections
between all exchanges in the Copenhagen area which resulted in many small trunk groups.
If Erlang’s B-formula were applied with a fixed blocking probability for dimensioning these
groups, then the utilisation would become poor.

Kai Moe (1893-1949), who was chief engineer in the Copenhagen Telephone Company, made
some quantitative economic evaluations and published several papers, where he introduced
marginal considerations, as they are known today in mathematical economics. Similar con-
siderations were later done by P.A. Samuelson in his famous book, first published in 1947.
On the basis of Moe’s works the fundamental principles of dimensioning are formulated for
telecommunication systems in Moe’s Principle (Jensen, 1950 [50]).

7.6.1 Dimensioning with fixed blocking probability

For proper operation, a loss system should be dimensioned for a low blocking probability. In
practice the number of channels n should be chosen so that E; ,(A) is about 1% to avoid
overload due to many non-completed and repeated call attempts which both load the system
and are a nuisance to subscribers (Cf. B-busy [52]).

n 1 2 3 10 20 20 100
A (E =1%) | 0.010 | 0.153 | 1.361 | 4.461 | 12.031 | 37.901 | 84.064
a 0.010 | 0.076 | 0.269 | 0.442 | 0.596 | 0.750 0.832

F,,.(A) 0.000 | 0.001 | 0.011 | 0.027 | 0.052 | 0.099 0.147
A; =1.2-A1]0.012 | 0.183 | 1.633 | 5.353 | 14.437 | 45.482 | 100.877
E [%] 1.198 | 1.396 | 1.903 | 2.575 | 3.640 | 5.848 8.077

a 0.012 | 0.090 | 0.320 | 0.522 | 0.696 | 0.856 0.927
Fi,.(A;) 0.000 | 0.002 | 0.023 | 0.072 | 0.173 | 0.405 0.617

Table 7.1: Upper part: For a fixed value of the blocking probability E = 1% n trunks can be
offered the traffic A. The average utilisation of the trunks is a, and the improvement function
is F1,(A) (7.16). Lower part: The values of E, a and Fy,(A) are obtained for an overload
of 20%.

Tab. 7.1 shows the offered traffic for a fixed blocking probability £ = 1% for some values of n.
The table also gives the average utilisation of channels, which is highest for large groups. If
we increase the offered traffic by 20 % to A; = 1.2+ A, we notice that the blocking probability
increases for all n, but most for large values of n.
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From Tab. 7.1 two features are observed:

a. The utilisation a per channel is, for a given blocking probability, highest in large groups
(Fig. 7.4). At a blocking probability E = 1 % a single channel can at most be used 36
seconds per hour on the average!

b. Large channel groups are more sensitive to a given percentage overload than small
channel groups. This is explained by the low utilisation of small groups, which therefore
have a higher spare capacity (elasticity).

Thus two conflicting factors are of importance when dimensioning a channel group: we may
choose among a high sensitivity to overload or a low utilisation of the channels.

7.6.2 Improvement principle (Moe’s principle)

As mentioned in Sec. 7.6.1 a fixed blocking probability results in a low utilisation (bad econ-
omy) of small channel groups. If we replace the requirement of a fixed blocking probability
with an economic requirement, then the improvement function F ,(A) (7.16) should take a
fixed value so that the extension of a group with one additional channel increases the carried
traffic by the same amount for all groups.

In Tab. 7.2 we show the congestion for some values of n and an improvement value F' = 0.05.
We notice from the table that the utilisation of small groups becomes better corresponding to
a high increase of the blocking probability. On the other hand the congestion in large groups
decreases to a smaller value. See also Fig. 7.7. If therefore we have a telephone system with
trunk group size and traffic values as given in the table, then we cannot increase the carried
traffic by rearranging the channels among the groups.

This service criteria will therefore in comparison with fixed blocking in Sec. 7.6.1 allocate
more channels to large groups and fewer channels to small groups, which is the trend we were
looking for.

The improvement function is equal to the difference quotient of the carried traffic with respect
to number of channels n. When dimensioning according to the improvement principle we thus
choose an operating point on the curve of the carried traffic as a function of the number of
channels where the slope is the same for all groups (AA/An = constant). A marginal increase
of the number of channels increases the carried traffic with the same amount for all groups.

It is easy to set up a simple economical model for determination of Fj,(A). Let us consider
a certain time interval (e.g. a time unit). Denote the income per carried erlang per time unit
by g. The cost of a cable with n channels is assumed to be a linear function:

Ch=Co+c-n. (7.31)
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n 1 2 5 10 20 20 100
A (Fg =0.05) | 0.271 | 0.607 | 2.009 | 4.991 | 11.98 | 35.80 | 78.73
a 0.213 | 0.272 ] 0.387 | 0.490 | 0.593 | 0.713 | 0.785

Ein(A) [%] |21.29 | 1028 [3.72 |1.82 | 097 | 047 | 0.29
A;=1.2-A | 0325| 0.728 | 2.411 | 5.989 | 14.38 | 42.96 | 94.476

E {%} 2451 | 13.30 |6.32 |4.28 3.55 3.73 4.62
a 0.245 | 0.316 | 0.452 | 0.573 | 0.693 | 0.827 | 0.901
Fy (A1) 0.067 | 0.074 | 0.093 | 0.120 | 0.169 | 0.294 | 0.452

Table 7.2: For a fixed value of the improvement function we have calculated the same values
as in table 7.1.

The total costs for a given number of channels is then (a) cost of cable and (b) cost due to
lost traffic (missing income):

Cn=9-AFE,(A) +co+c-n, (7.32)

Here A is the offered traffic, i.e. the potential traffic demand on the group considered. The
costs due to lost traffic will decrease with increasing n, whereas the expenses due to cable
increase with n. The total costs may have a minimum for a certain value of n. In practice n
is an integer, and we look for a value of n, for which we have (cf. Fig. 7.6):

Cho1>C, and C, <Chyq.

As Ey ,(A) = E,(A) we get:

&
A{E,-1(A) — E,(A)} > ; > A{E,(A) — Ena(A)} (7.33)
or:
Fl,n—1<A) > FB Z Fl,n(A) , (734)
where: . o ch '
FB _ E _ COSt per extra channe (735>

g Income per extra channel

Fp is called the improvement value. We notice that ¢y does not appear in the condition for
minimum. It determines whether it is profitable to carry traffic at all. We must require that
for some positive value of n we have:

g-A{1-E,(A)} >co+c-n. (7.36)

Fig. 7.7 shows blocking probabilities for some values of Fz. We notice that the economic
demand for profit results in a certain improvement value. In practice we choose Fg partly
independent of the cost function.
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Figure 7.6: The total costs are composed of costs for cable and lost income due to blocked
traffic (7.32). Minimum of the total costs are obtained when (7.33) is fulfilled, i.e. when the
two cost functions have the same slope with opposite signs (difference quotient). (Fg = 0.35,
A = 25 erlang). Minimum is obtained for n = 30 trunks.

In Denmark the following values have been used:

Fp =

0.35 for primary trunk groups.

0.05 for groups with no alternative route.

0.20 for service protecting primary groups.

(7.37)



7.6. PRINCIPLES OF DIMENSIONING 143

Blocking probability E [%)] Fp
10
’ 0.35
| \\\
| S~ —
\
. \\ \%\_\“\
| — 1010 ]
e .05
O T T T T T T T T T T T T T T T T T T T 1T T T T T T T T 1T

0 10 20 30 40 50 60 70 80 90 100
Offered traffic A

Figure 7.7: When dimensioning with a fixed value of the improvement value Fg the blocking
probabilities for small values of the offered traffic become large (cf. Tab. 7.2).
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Chapter 8

Loss systems with full accessibility

In this chapter we generalise Erlang’s classical loss system to state-dependent Poisson-arrival
processes, which include the so-called BPP-traffic models:

e Binomial case: Engset’s model,
e Poisson case: Erlang’s model, and
e Pascal (Negative Binomial) case: Palm—Wallstrém’s model.

These models are all insensitive to the service time distribution. Engset and Pascal models
are even insensitive to the distribution of the idle time of sources. After an introduction in
Sec. 8.1 we go through the basic classical theory. In Sec. 8.2 we consider the Binomial case,
where the number of sources S (subscribers, customers, jobs) is limited and the number of
channels n always is sufficient (S < n). This system is dealt with by balance equations in the
same way as the Poisson case (Sec. 7.2). We consider the strategy Lost-Calls-Cleared (LCC).

In Sec. 8.3 we restrict the number of channels so that it becomes less than the number of
sources (n < S). We may then experience blocking and we obtain the truncated Binomial
distribution, which also is called the Engset distribution. The probability of time congestion
E is given by Engset’s formula. With a limited number of sources, time congestion, call
congestion, and traffic congestion differ, and the PASTA—property is replaced by the general
arrival theorem, which tells that the state probabilities of the system observed by a customer
(call average) is equal to the state probability of the system without this customer (time
average). Engset’s formula is computed numerically by a formula recursive in the number
of channels n derived in the same way as for Erlang’s B-formula. Also formulee recursive in
number of sources S and in both n & S are derived.

In Sec. 8.6 we consider the Negative Binomial case, also called the Pascal case, where the
arrival intensity increases linearly with the state of the system. If the number of channels is
limited, then we get the truncated Negative Binomial distribution (Sec. 8.7).
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S sources n channels

Figure 8.1: A full accessible loss system with S sources, which generates traffic to n channels.
The system is shown by a so-called chicko-gram. The beak of a source symbolises a selector
which points upon the channels (servers) among which the source may choose.

8.1 Introduction

We consider a system with same structure (full accessibility group) and strategy (Lost-Calls-
Cleared) as in Chap. 7, but with more general traffic processes. In the following we assume
the service times are exponentially distributed with intensity p (mean value 1/u); the traffic
process then becomes a birth & death process, a special Markov process, which is easy to
deal with mathematically. Usually we define the state of the system as the number of busy
channels. All processes considered in Chapter 7 and 8 are insensitive to the service time
distribution, i.e. only the mean service time is of importance for the state probabilities. The
service time distribution itself has no influence.

Definition of offered traffic: In Sec. 2.1 we define the offered traffic A as the traffic carried
when the number of servers is unlimited, and this definition is used for both the Engset-case
and the Pascal-case. The offered traffic is thus independent of the number of servers.

Only for stationary renewal processes as the Poisson arrival process in the Erlang case this
definition is equivalent to the average number of calls attempts per mean service time. In
Engset and Pascal cases the arrival processes are not renewal processes as the mean inter-
arrival time depends on the actual state.

Peakedness is defined as the ratio between variance and mean value of the state probabilities.
For the offered traffic the peakedness is considered for an infinite number of channels.

We consider the following arrival processes, where the first case already has been dealt with
in Chap. 7:

1. Erlang-case (P — Poisson-case):
The arrival process is a Poisson process with intensity A. This type of traffic is called
random traffic or Pure Chance Traffic type One, PCT-I. We consider two cases:

a. n = oo: Poisson distribution (Sec. 7.2).
The peakedness is in this case equal to one: Z=1.
b. n < co: Truncated Poisson distribution (Sec. 7.3).
2. Engset-case (B — Binomial-case):

There is a limited number of sources S. The individual source has a constant call
(arrival) intensity v when it is idle. When it is busy the call intensity is zero. The
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arrival process is thus state-dependent. If ¢ sources are busy, then the arrival intensity
is equal to (S—1)~.

This type of traffic is called Pure Chance Traffic type Two, PCT-II. We consider the
following two cases:

a. n > S: Binomial distribution (Sec. 8.2).
The peakedness is in this case less than one: Z <1.

b. n < S: Truncated Binomial distribution (Sec. 8.3).

3. Palm-Wallstrom-case (P — Pascal-case):
There is a limited number of sources S. If at a given instant we have ¢ busy sources,
then the arrival intensity equals (S+7)~y. Again we have two cases:

a. n = oo: Pascal distribution = Negative Binomial distribution (Sec. 8.6).
In this case peakedness is greater than one: Z>1.

b. n < oco: Truncated Pascal distribution (truncated negative Binomial distribution)
(Sec. 8.7).

As the Poisson process may be obtained by an infinite number of sources with a limited total
arrival intensity A, the Erlang-case may be considered as a special case of the two other cases:

lim S~y =M.
(50 0y 7 !

For any finite state ¢ we then have a constant arrival intensity: (S £17)y ~ S~y = A.

The three traffic types are referred to as BPP-traffic according to the abbreviations given
above (Binomial & Poisson & Pascal). As these models include all values of peakedness Z >0,
they can be used for modelling traffic with two parameters: mean value A and peakedness
Z. For arbitrary values of Z the number of sources S in general becomes non-integral.

Performance—measures: The performance parameters for loss systems are time congestion F,
Call congestion B, traffic congestion C, and the utilisation of the channels. Among these,
traffic congestion C' is the most important characteristic. These measures are derived for
each of the above-mentioned models.

8.2 Binomial Distribution

We consider a system with a limited number of sources (subscribers) S. The individual source
switches between the states idle and busy. A source is idle during a time interval which is
exponentially distributed with intensity 7, and the source is busy during an exponentially
distributed time interval (service time, holding time) with intensity p (Fig. 8.2). This kind



148 CHAPTER 8. LOSS SYSTEMS WITH FULL ACCESSIBILITY

of sources are called sporadic sources or on/off sources. This type of traffic is called Pure
Chance Traffic type Two (PCT-II) or pseudo-random traffic.

The number of channels/trunks n is in this section assumed to be greater than or equal to
the number of sources (n > ), so that no calls are lost. Both n and S are assumed to be

integers, but it is possible to deal with non-integral values (Iversen & Sanders, 2001 [13]).
State
Busy t- - - - -4+ - - - - - - — 1 -
Time
Idle
-1 41
arrival departure arrival

Figure 8.2: Every individual source is either idle or busy, and behaves independent of all
other sources.

Sy (S=Lv 29 g
I 2 (S=Dp  Su

Figure 8.3: State transition diagram for the Binomial case (Sec. 8.2). The number of sources
S is less than or equal to the number of circuits n (S < n).

8.2.1 Equilibrium equations

We are only interested in the steady state probabilities p(i), which are the proportion of time
the process spend in state [¢]. We base our calculations on the state transition diagram in
Fig. 8.3. We consider cuts between neighbouring states and find:

Sy-p(0) =p-p(1),
(S=1)v-p(1) =2u-p(2),

(S—i—=1)y-pli—1) =ip-p(), (8.1)
(S—=1)y-pli) =@+ u-pli+1),

ly-p(S—1) =5Su-p(S). )
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All state probabilities are expressed by p(0):

Wy = 210 -0 (1) (2 B
o) = ETm = (5) ()
i = T i < - (5) (7))
pivt) = B0n = (P)(2)
§S) = ep(s ) =0-(3) (1)

The total sum of all probabilities must be equal to one:

= S\ (N LS () S\ (7)°
1 = p(O)-{l—l—(l).(;) 4_(2)(;) S g ;
S
_ g
= p(O)-{l—l——} : (8.2)
1
where we have used Newton’s Binomial expansion. By letting 8 = ~/u we get:
1
0) = =—=3" 8.3
p(0) e (8.3)

The parameter (3 is the offered traffic per idle source (number of call attempts per time unit
for an idle source — the offered traffic from a busy source is zero) and we find:

@ ' (1fﬁ)i' (1iﬁ)5i |

which is the Binomial distribution (Tab. 6.1). Finally, we get by introducing:

B _ v . p
1+8 p+vy 1/y+1/p’

p(i) = (S)-ai-(l—a)s_i, i=0,1,...,5, 0<8<n, (8.4)
1
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In this case, when a call attempt from an idle source never is blocked, the parameter a is equal
to the carried traffic y per source (a = y), which is equivalent to the probability that a source
is busy at a random instant (the proportion of time the source is busy). This is also observed
from Fig. 8.2, as all arrival and departure points on the time axes are regeneration points
(equilibrium points). A cycle from start of a busy state (arrival) till start of the next busy
state is representative for the whole time axes, and time averages are obtained by averaging
over one cycle. Notice that for a systems with blocking we have y # a (cf. Sec. 8.3).

The Binomial distribution obtained in (8.4) is sometimes called the Bernoulli distribution in
teletraffic theory, but this should be avoided as we in statistics use this name for a two-point
distribution.

Formula (8.4) can be derived by elementary considerations. All subscribers can be split
into two classes: idle subscribers and busy subscribers. The probability that an arbitrary
subscriber belongs to class busy is y = a, which is independent of the state of all other
subscribers as the system has no blocking and call attempts always are accepted. There are
in total S subscribers (sources) and the probability p(i) that i sources are busy at an arbitrary
instant is given by the Binomial distribution (8.4) & Tab. 6.1.

8.2.2 Traffic characteristics of Binomial traffic

We summarize definitions of parameters given above:

v = call intensity per idle source, (8.5)
1/ = mean service (holding) time, (8.6)
B =v/pn = offered traffic per idle source. (8.7)

By definition, the offered traffic of a source is equal to the carried traffic in a system with
no congestion, where the source freely switches between states idle and busy. Therefore, we
have the following definition of the offered traffic:

a= % = offered traffic per source, (8.8)
A=S5-a = total offered traffic, (8.9)

y = carried traffic per source (8.10)
Y =S5-y = total carried traffic. (8.11)

Offered traffic per idle source is a difficult concept to deal with because the proportion of
time a source is idle depends on the congestion. The number of calls offered by a source
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depends on the number of channels (feed-back): a high congestion results in more idle time
for a source and thus in more call attempts.

Time congestion:

E =0 S<n,
E = pn)=a" S=n. (8.12)
Carried traffic:
s
Y = S-y=> i-p(i)
i=0

which is the mean value of the Binomial distribution (8.4). In this case with no blocking we
of course have a = y and:

Traffic congestion:

A-Y
C=——=0. 8.14
. (8.14)
Number of call attempts per time unit:
S
A= > pli)-(S—i)y
i=0

S
= VS—W-Zi-p(i):fyS—fySa
i=0

= Sv-(1-y).

As all call ttemptd are accepted we get:
Call congestion:
B=0. (8.15)

Traffic carried by channel v:

_ 5y, (8.16)

n

S|

Random hunting: ay =

Sequential hunting: complex expression derived by L.A. Joys (1971 [50]).

Improvement function:

Fo(A) =Y, — Y, =0. (8.17)
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Peakedness (Tab. 6.1):
o> S-a-(1—a)

Z = —_— —
i S-a ’
Z = l—a=— <1 (8.18)
- T1+5 '

We observe that the peakedness Z is independent of the number of sources and always less
than one. Therefore it corresponds to smooth traffic.

Duration of state i: This is exponentially distributed with rate:
V(@) =(S—i)-v+i p, 0<i<S<n. (8.19)

Finite source traffic is characterized by number of sources S and offered traffic per idle source
(. Alternatively, we in practice often use offered traffic A and peakedness Z. We have the
following relations between the two representations:

A 5.%, (8.20)
z - ﬁ, (8.21)
g = % (8.22)
S = %. (8.23)

8.3 Engset distribution

The only difference in comparison with Sec. 8.2 is that number of sources S now is greater
than or equal to number of trunks (channels), S > n. Therefore, call attempts may experience
congestion.

Sy (5=1)~ (5—i)y (S—n+1)~y
1% 2p i u

Figure 8.4: State transition diagram for the Engset case with S > n, where S is the number
of sources and n is the number of channels.
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8.3.1 State probabilities

The cut equations are identical to (8.1), but they only exist for 0 < i < n (Fig. 8.4). The

normalisation equation (8.2) becomes:
S Y "
n L '

1:p<0>.{1+(f>.(%)+...+

From this we obtain p(0) and letting 5 = 7/u the state probabilities become:

TG

In the same way as above we may by using (8.8) rewrite this expression to a form, which is
analogue to (8.4):

p(i) = HG) oA , 0<i<n, (8.25)
jzo <‘j) cal - (1—a)

from which we directly observe why it is called a truncated Binomial distribution (cf. trun-
cated Poisson distribution (7.10)). The distribution (8.24) & (8.25) is called the Engset—
distribution after the Norwegian T. Engset (1865-1943) who first published the model with
a finite number of sources (1918 [20]).

8.3.2 Traffic characteristics of Engset traffic

The Engset-distribution results in more complicated calculations than the Erlang loss system.
The essential issue is to understand how to find the performance measures directly from the
state probabilities using the definitions. The Engset system is characterised by the parameters
B = 7/p = offered traffic per idle source, S = number of sources, and n = number of channels.

Time congestion E: this is by definition equal to the proportion of time the system is blocking
new call attempts, i.e. p(n) (8.24):

S\ o
Ens(8) = p(n) = (”)—ﬁ S=n. (8.26)
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Call congestion B: this is by definition equal to the proportion of call attempts which are
lost. Only call attempts arriving at the system in state n are blocked. During one unit of
time we get the following ratio between the number of blocked call attempts and the total
number of call attempts:

Bs(g) — -2 5=
Zop(j) (S =)~
_ (i)ﬁn (8 =n)v
()
Using |
()5 =(7),
we get:

S—1\
Bns(B) = ( . >.ﬁ

j=0
BmS(ﬁ) = En,S—l(B) s S 2 n. (827)

This result may be interpreted as follows. The probability that a call attempt from a random
source (subscriber) is rejected is equal to the probability that the remaining (S —1) sources
occupy all n channels. This is called the arrival theorem, and it can be shown to be valid
for both loss and delay systems with a limited number of sources. The result is based on
the product form among sources and the convolution of sources. As F increases when S

increases, we have B, () = E, s-1(0) < E, s(3).

Theorem 8.1 Arrival-theorem: For all systems with a limited number of sources a random
source upon arrival will observe the state of the system as if the source itself does not belong
to the system.

The PASTA-property is included in this case because an infinite number of sources minus
one is still an infinite number.
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Carried traffic: By applying the cut equation between state [i — 1] and state [i] we get:

n

Y = Zi-p(i) (8.28)
- Z%-(S—H—l)-p(i—l)

_ Z_:g.(s_i) "0 (8.29)

= D 8-(5=0)-pl) =8+ (S =) -pln).

Y = B-(S—Y)—fB-(S—n)-E, (8.30)
as £ = E, 5(8) = p(n). This is solved with respect to Y
_ B
_1+B.{S_(S_n).]_~j}, (8.31)

Traffic congestion C' = C,, s(A). This is the most important congestion measure. The offered
traffic is given by (8.20) and we get:

A-Y
C = —
S B B
B 1+B_1+ﬁ.{5_<s_n).E}
N S ’
1+
S—n
¢ = "5 E. (8.32)

We may also find the carried traffic if we know the call congestion B. The number of accepted
call attempts from a source which is on the average idle 1/~ time unit before it generate one
call attempt is 1 - (1 — B), and each accepted call has an average duration 1/u. Thus the
carried traffic per source, i.e. the proportion of time the source is busy, becomes:

Y= (1-B)/n
v+ (1 —-B)/un

The total carried traffic becomes:

p(1-B)

(8.33)
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Equalizing the two expressions for the carried traffic (8.31) & (8.33) we get the following

relation between F and B:
S B

E= . ) 8.34
S—n 14p((1—-B) (8:34)
Number of call attempts per time unit:
A= > pli)-(S—i)y
i=0
A= (S=Y) 7, (8.35)

where Y is the carried traffic (8.28). Thus (S — Y) is the average number of idle sources
which is evident.

Historically, the total offered traffic was earlier defined as A/p. This is, however, misleading
because we cannot assign every repeated call attempt a mean holding time 1/u. Also it
has caused a lot of confusion because the offered traffic by this definition depends upon the
system (number of channels). With few channels available many call attempts are blocked
and the sources are idle a higher proportion of the time and thus generate more call attempts
per time unit.

Lost traffic:
A = A-C
I} S—n
S S E
Sl—i—ﬁ S
(S—n)p
ZAa i 8.36
1+ ( )

Duration of state ¢: This is exponentially distributed with intensity:

1) =S —1)-v+i-p, 0<i<n,
) =(S=i)-v+i-p (8.37)
y(n) =np, i=n.
Improvement function:
Fos(A) =Y, —Y,. (8.38)

Example 8.3.1: Call average and time average

Above we have defined the state probabilities p(i) under the assumption of statistical equilibrium
as the proportion of time the system spends in state 4, i.e. as a time average. We may also study
how the state of the system looks when it is observed by an arriving or departing source (user) (call
average). If we consider one time unit, then on the average (S — i)~ - p(i) sources will observe the
system in state [7] just before the arrival epoch, and if they are accepted they will bring the system
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into state [i + 1]. Sources observing the system in state n are blocked and remain idle. Therefore,
arriving sources observe the system in state [4] with probability:

(i) = =S =DVPO gy (8.39)
> (S =)y p)
=0

In a way analogue to the derivation of (8.27) we may show that in agreement with the arrival
theorem (Theorem 8.1) we have as follows:

Tn,5,3(%1) = Pns—18(i—1), i=0,1,...,n. (8.40)

When a source leaves the system and looks back it observes the system in state [¢ — 1] with
probability:
ip-p(d)

> iwep)
j=1

By applying cut equations we immediately get that this is identical with (8.39), if we include the
blocked customers. On the average, sources thus depart from the system in the same state as they
arrive to the system. The process will be reversible and insensitive to the service time distribution.
If we make a film of the system, then we are unable to determine whether time runs forward or
backward. O

Yn,sp(i—1) = i=1,2,...,n. (8.41)

8.4 Relations between E, B, and C

From (8.34) we get the following relation between £ = E,, s(3) and B = B,, s(8) = E,.s-1(0):

S B 1 S—n 1

b= S—n1i+p0-B " E” S {(1+ﬁ)~§—6}, (8.42)
(§—n)-E-(1+0) 11 s 1
S+(S-n-E-5 E‘1+5{5—n E+ﬁ}' (843)

The expressions to the right-hand side are linear in the reciprocal blocking probabilities. In
(8.32) we obtained the following simple relation between C' and E:

S—n
= - B 44
C 5 , (8.44)

s
E = -C. 4
——-C (8.45)
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If we in (8.44) express E by B (8.42), then we get C' expressed by B:

B
C = T3 A-DB) (8.46)
- (1+pcC

This relation between B and C' is general and may also be derived as follows. The carried
traffic Y corresponds to (Y - ) accepted call attempts per time unit. The average number of
idle sources is (S—Y'), so the average number of call attempts per time unit is (S—Y) vy (8.35).
The call congestion becomes:

(S-Y)y-Y-p
(S=Y)y

(S=Y)5-Y
(5-Y)p
By definition Y = A (1 — C) and from (8.20) we have S = A (1+ (3)//. Inserting this we get:

AQl+p)-A0-C)p-A(1-C)

b= AT+ 5 —AL—0) 7
(1+p)C
W q.e.d.

From the last equation we see that for small values of the call congestion B the traffic
congestion is Z times bigger than the call congestion:

B
C~——=7-B. 8.48
145 (8.48)
From (8.46) and (8.27) we get for Engset traffic:
Cns(B) < Bus(B) < Ens(B) - (8.49)

8.5 Evaluation of Engset’s formula

If we try to calculate numerical values of Engset’s formula directly from (8.26) (time con-
gestion F), then we will experience numerical problems for large values of S and n. In
the following we derive various numerically stable recursive formulee for E and its reciprocal
I = 1/E. When the time congestion E is known, it is easy to obtain the call congestion B and
the traffic congestion C' by using the formulee (8.43) and (8.44). Numerically it is also simple
to find any of the four parameters S, 3, n, £ when we know three of them. Mathematically
we may assume that n and eventually S are non-integral.
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8.5.1 Recursion formula on n

From the general formula (7.27) recursive in n we get using A, = (S —z)y and = v/u:

Yr—1 Em—
£,y = o P
7 1+ ’y;;l : Ex—l,S(ﬁ)

(S—a+1)B- Ey1,5(0)
2+ (S—a+1)3- By 5(8)

E,s(8) Eos(B)=1. (8.50)

Introducing the reciprocal time congestion I,, s(3) = 1/ E,, s(3), we find the recursion formula:

T

[x,5(6> =1+ m [zfl,S(ﬁ) ) [0,3(6) =1. (8.51)

The number of iterations is n. Both (8.50) and (8.51) are analytically exact, numerically
stable and accurate recursions for increasing values of x. However, for decreasing values of x
the numerical errors accumulate and the recursions are not reliable.

8.5.2 Recursion formula on S

Let us denote the normalised state probabilities of a system with n channels and S—1 sources
by pns—1(i). We get the state probabilities of a system with S sources and n channels by
convolving these state probabilities with the state probabilities of a single source which are
given by {p11(0) =1 —a, p11(1) = a}. We then get states from zero to n + 1, truncate the
state space at n, and normalise the state probabilities (cf. Example 3.2.1) (assuming p(z) = 0
when z < 0):

Ins(i) = (1—a) -pps_1(i)+a-prsa(i—1), i=0,1,...,n. (8.52)

The obtained state probabilities g, g(7) are not normalised, because we truncate at state [n ]
and exclude the last term for state [n+1]: ¢ns(n+ 1) = a- p,s-1(n). The normalised state
probabilities p, g(i) for a system with S sources and n channels are thus obtained from the
normalised state probabilities p,, g_1(7) for a system with S — 1 sources by:

n = : , =0,1,...,n. 8.53
5] l—a-ppsi(n) Z ! (8:53)
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The time congestion E, ¢() for a system with S sources can be expressed by the time
congestion E, s_1(03) for a system with S—1 sources by inserting (8.52) in (8.53):

Ens(8) = pnsn)

(1 —CL) : pn,S—l (TL) +a- pn,S—l (n_ 1)
l1—-a- Pn,s5—1 (n>

(1—a)- Ensa(8) +a- % Ens1(8)
l—a- En,S—l (ﬁ) ’

where we have used the balance equation between state [n—1,5 —1] and state [n, S —1].
Replacing a by using (8.8) we get:

_ En,S—l (ﬁ) + ﬁ En,S—l (ﬂ)
1+ 8= B E;s1(5)

Thus we obtain the following recursive formula:

_ S En.s1(5)
S—n 14+0{1—-E,s1(0)}’

The initial value is obtained from (8.12). Using the reciprocal blocking probability I = 1/E
we get:

En,S

E,.s(8) S>n, E,.(08)=ad". (8.54)

S—n
S(l—a)
For increasing S the number of iterations is S —n. However, numerical errors accumulate
due to the multiplication with (S/(S — n) which is greater than one, and the applicability is
limited. Therefore, it is recommended to use the recursion (8.57) given in the next section for
increasing S. For decreasing S the above formula is analytically exact, numerically stable,
and accurate. However, the initial value should be known beforehand.

Is(B) = ALusa(B) —a}, S>n, I8 =a". (8.55)

8.5.3 Recursion formula on both n and S

If we insert (8.50) into (8.54), respectively (8.51) into (8.55), we find:

. Sa- Enfl,Sfl(ﬁ> o
En,S(ﬁ) - n+ (S—n)a ] En717571(6) ; EO,S—n(ﬂ) - 17 (856)

hol®) = oo hasa@+ 22 D) =1, (8.57)

which are recursive in both the number of servers and the number of sources. Both of these
recursions are numerically accurate for increasing indices and the number of iterations is n

(Joys, 1967 [51]).
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From the above we have the following conclusions for recursion formulee for the Engset for-
mula. For increasing values of the parameter, recursion formule (8.50) & (8.51) are very
accurate, and formulae (8.56) & (8.57) are almost as good. Recursion formulae (8.54) &(8.55)
are numerically unstable for increasing values, but unlike the others stable for decreasing
values. In general, we have that a recursion, which is stable in one direction, will be unstable
in the opposite direction.

Example 8.5.1: Engset’s loss system

We consider an Engset loss system having n = 3 channels and S = 4 sources. The call rate per idle
source is v = 1/3 calls per time unit, and the mean service time (1/u) is 1 time unit. We find the
following parameters:

8 = % =3 erlang (offered traffic per idle source),
a = b 1L erlang (offered traffic per source)
148 4 8 P ’
A = S-a=1 erlang (offered traffic),
A 3
Z = 1——==- k .
Sl (peakedness)

From the state transition diagram we obtain the following table:

i ~(%) () q(7) p(7) i p(i) ~(2) - p(3)

0 4/3 0 1.0000 | 0.3176 | 0.0000 0.4235

1 3/3 1 1.3333 | 0.4235 | 0.4235 0.4235

2 2/3 2 0.6667 | 0.2118 | 0.4235 0.1412

3 1/3 3 0.1481 | 0.0471 | 0.1412 0.0157
Total 3.1481 | 1.0000 | 0.9882 1.0039

We find the following blocking probabilities:

1
Time congestion: Es 4 (3) = p(3) =0.0471,
1 A-Y 1-0.9882
Traffic congestion: C34 (3) = 1 - 7 = 0.0118,

3
Call congestion: Bs 4 <;) = {7(3)-p(3)} /{;’y(z) p(z)} = (1)8(1)23) = 0.0156 .

We notice that £ > B > C, which is a general result for the Engset case (8.49) & (Fig. 8.6). By
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applying the recursion formula (8.51) we, of course, get the same results:

1 (4-1+1)-1-1 4
Evq(5) = T =5
3 1+(4-1+1)-4-1 7
1 (4-2+1)-1-2 2
E2,4 5 = 1 4 o7
3 24+@4-2+1)-3-2 9
1 (4-3+4+1)-4.2 4
Esusl=) = 3 9 — — =0.0471, q.ed.
3’4(3> 3+(4-3+1)-1.2 8 d

Example 8.5.2: Limited number of sources

The influence from the limitation in the number of sources can be estimated by considering either
the time congestion, the call congestion, or the traffic congestion. The congestion values are shown
in Fig. 8.6 for a fixed number of channels n, a fixed offered traffic A, and an increasing value of
the peakedness Z corresponding to a number of sources S, which is given by S = A/(1 — Z) (8.23).
The offered traffic is defined as the traffic carried in a system without blocking (n = o). Here
Z =1 corresponds to a Poisson arrival process (Erlang’s B-formula, E = B = C). For Z < 1 we
get the Engset-case, and for this case the time congestion E is larger than the call congestion B,
which is larger than the traffic congestion C. For Z > 1 we get the Pascal-case (Secs. 8.6 & 8.7 and
Example 8.7.1). O

8.6 Pascal Distribution (Negative Binomial)

In the Binomial case the arrival intensity decreases linearly with an increasing number of
busy sources. Palm & Wallstrom introduced a model where the arrival intensity increases
linearly with the number of busy sources (Wallstrém, 1964 [100]). The arrival intensity in
state ¢ is given by:

vi=v-(S+1i), 0<i<n, (8.58)

where v and S are positive constants. The holding time are still assumed to be exponentially
distributed with intensity pu.

In this section we assume the number of channels is infinite. We then set up a state transition
diagram (Fig. 8.5 with n infinite) and find the steady state probabilities which only exist for
v < . We obtain the state probabilities:

p(z)z(_f)-(—%)iQ—%)s, 0<i<oo, 7<upu, (8.59)
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<_ZS> _ (—1)t. (SJ“; - 1) . (8.60)

Formula (8.59) is the Negative Binomial distribution, also called the Pascal distribution
(Tab. 6.1). The traffic characteristics of this model are obtained by an appropriate substi-
tution of the parameters of the Binomial distribution. This is dealt with in the following
section, which deals with a more realistic case.

where

8.7 Truncated Pascal distribution

We consider the same traffic process as in Sec. 8.6, but now we restrict the number of servers
to a limited number n. The restriction v < p is no more necessary as we always will obtain
statistical equilibrium with a finite number of states. The state transition diagram is shown
in Fig. 8.5, and state probabilities are given by:

p(i) = n(_is> <_%) 0<i<n. (8.61)

26

This is the truncated Negative Binomial (Pascal) distribution. Formally it is obtained from
the Bernoulli/Engset case by the the following substitutions:

S isreplaced by -9, (8.62)

v isreplaced by — . (8.63)

By these substitutions all formulae of the Bernoulli/Engset cases are valid for the truncated
Pascal distribution, and the same computer programs can be use for numerical evaluation.

It can be shown that the state probabilities (8.61) like state probabilities for Erlang and
Engset loss systems are valid for arbitrary holding time distribution (Iversen, 1980 [38]).
Assuming exponentially distributed holding times, this model has the same state probabilities
as Palm’s first normal form, i.e. a system with a Poisson arrival process having a random
intensity distributed as a gamma-distribution (inter-arrival times become Pareto distributed,
which is a heavy-tailed distribution. The model is used for modelling overflow traffic which
has a peakedness greater than one. Thus we get from (8.21) by the above substitution (8.63):

1 gl
5 . (8.64)

Remember that the peakedness of a traffic stream is calculated for an infinite number of
channels. For the Pascal case we get (cf. (8.49)):

Cn,5(8) > Bus(B8) > Ens(3). (8.65)
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S+1 (S+i)y (S4+n—1)y
VRN RN

Q/ \/ S S~ \_/:
(n—1)p n

Figure 8.5: State transition diagram for the Pascal (truncated Negative Binomial) case.

Example 8.7.1: Peakedness: numerical example

In Fig. 8.6 we keep the number of channels n and the offered traffic A fixed, and calculate the
blocking probabilities for increasing peakedness Z. For Z > 1 we get the Pascal-case. For this case
the time congestion F is less than the call congestion B which is less than the traffic congestion C.
We observe that both the time congestion and the call congestion have a maximum value. Only the
traffic congestion gives a reasonable description of the performance of the system. O

Example 8.7.2: Pascal loss system

We consider a Pascal loss system with n = 4 channels and S = 2 sources. The arrival rate is
v = 1/3 calls/time unit per idle source, and the mean holding time (1/x) is 1 time unit. We find
the following parameters when we for the Engset case let S = —2 (8.62) and v = —1/3 (8.63):

ol 1
g = 1=—2,
" 3
I} 1
a = —— =—=
1+ 2’
1
A = S-a:—2-{—2}:1 erlang,
7 _ 1 1 :§
g1-% 2

From a state transition diagram we get the following parameters:

i | 26 | w6 | a@ | pG) | i-pG) | AG)-pG)

0 0.6667 0 1.0000 | 0.4525 0.0000 0.3017
1 1.0000 1 0.6667 | 0.3017 0.3017 0.3017
2 1.3333 2 0.3333 | 0.1508 0.3017 0.2011
3 1.6667 3 0.1481 | 0.0670 0.2011 0.1117
4 2.0000 4 0.0617 | 0.0279 0.1117 0.0559

Total 2.2099 | 1.0000 0.9162 0.9721
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Congestion Probability [%]

16
C
12
8
B
J——
E
4 %
E/C
0 / Z

0.0 0.5 1.0 1.5 2.0 2.5
Peakedness Z

Figure 8.6: Time congestion E, Call congestion B and Traffic congestion C' as a function of
peakedness Z for BPP—traffic i a system with n = 20 trunks and an offered traffic A = 15
erlang. More comments are given in Example 8.5.2 and Example 8.7.1. For applications the
traffic congestion C' is the most important, as it is almost a linear function of the peakedness.

We find the following blocking probabilities:

1
Time congestion: — Ej _o (—3) = p(4) =0.0279.

A-Y 1-09162

= 0.0838.
A 1

1
Traffic congestion: Cy _o <_3> =

4
Call congestion: By <—;> = {v(4) p(4)}/{2’y(z) p(z)} _ 00559 0.0575.
=0

©0.9721

We notice that £ < B < C, which is a general result for the Pascal case. By using the same
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recursion formula as for the Engset case (8.50), we of course get the same results:

Eo_» <—;) — 10000,

1, <_;) B 14%31 1 :g’

P2 <_;> N 2%;23 :é’

Bs—2 <_:15> N 34%5% :%’

Iy o <—;> = 4—?—'22?)229 = % =0.0279 q.e.d.

Updated: 2006.02.13



Chapter 9

Overflow theory

In this chapter we consider systems with restricted (limited) accessibility, i.e. systems where
a subscriber or a traffic flow only has access to k specific channels from a total of n (k < n).
If all £ channels are busy, then a call attempt is blocked even if there are idle channels
among the remaining (n—k) channels. An example is shown in Fig. 9.1, where we consider
a hierarchical network with traffic from A to B, and from A to C. From A to B there is a
direct (primary) route with n; channels. If they all are busy, then the call is directed to the
alternative (secondary) route via T to B. In a similar way, the traffic from A to C has a
first-choice route AC and an alternative route ATC. If we assume the routes TB and TC are
without blocking, then we get the accessibility scheme shown to the right in Fig. 9.1. From
this we notice that the total number of channels is (n; 4+ ns + ni2) and that the traffic AB
only has access to (n;+mni2) of these. In this case sequential hunting among the routes should
be applied so that a call only is routed via the group nis, when all n; primary channels are
busy.

It is typical for a hierarchical network that it possesses a certain service protection. Indepen-
dent of how high the traffic from A to C is, then it will never get access to the ny channels.
On the other hand, we may block calls even if there are idle channels, and therefore the
utilisation will always be lower than for systems with full accessibility. The utilisation will,
however, be bigger than for separate systems with the same total number of channels. The
common channels allows for a certain traffic balancing between the two groups.

Historically, it was necessary to consider restricted accessibility because the electro-mecha-
nical systems had very limited intelligence and limited selector capacity (accessibility). In
digital systems we do not have these restrictions, but still the theory of restricted accessibility
is important both in networks and in guaranteeing the grade-of-service.
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OC

Figure 9.1: Telecommunication network with alternate routing and the corresponding acces-
sibility scheme, which is called an O’Dell-grading. We assume the links between the transit
exchange T and the exchanges B and C are without blocking. The nis channels are common
for both traffic streams.

9.1 Overflow theory

The classical traffic models assume that the traffic offered to a system is pure chance traffic
type one or two, PCT-I or PCT-II. In communication networks with alternative traffic
routing, the traffic which is lost from the primary group is offered to an overflow group, and
it has properties different from PCT traffic (Sec. 6.4). Therefore, we cannot use the classical
models for evaluating blocking probabilities of overflow traffic.

Example 9.1.1: Group divided into two

Let us consider a group with 16 channels which is offered 10 erlang PCT-I traffic. By using Erlang’s
B—formula we find the blocking probability E = 2.23% and the lost traffic 0.2230 erlang.

We now assume sequential hunting and split the 16 channels into a primary group and an overflow
group, each of 8 channels. By using Erlang’s B—formula we find the overflow traffic from the primary
group equal to 3.3832 erlang. This traffic is offered to the overflow group. Using Erlang’s B—formula
again, we find the lost traffic from the overflow group: A, = 3.3832 - E3(3.3832) = 0.0493 [erlang] .
The total blocking probability in this way becomes 0.493%, which is much less than the correct
result 2.23%. We have made an error by applying the B—formula to the overflow traffic, which is
not PC'T-I traffic, but more bursty. O

In the following we describe two classes of models for overflow traffic. We can in principle
study the traffic process either vertically or horizontally. By vertical studies we calculate the
state probabilities (Sec. 9.1.1-9.4.3). By horizontal studies we analyse the distance between
call arrivals, i.e. the inter-arrival time distribution (9.5).
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Figure 9.2: Different overflow systems described in the literature.

9.1.1 State probability of overflow systems

Let us consider a full accessible group with ordered (sequential) hunting. The group is split
into a limited primary group with n channels and an overflow group with infinite capacity.
The offered traffic A is assumed to be PCT-I. This is called Kosten’s system (Fig. 9.2). The
state of the system is described by a two-dimensional vector:

p(i.j),  0<i<n, 0<j<oco, (9.1)

which is the probability that at a random point of time ¢ channels are occupied in the primary
group and j channels in the overflow group. The state transition diagram is shown in Fig. 9.3.
Kosten (1937 [68]) analysed this model and derived the marginal state probabilities:

p(i,-) = > p@,4),  0<i<n, (9.2)
=0
p(-.3) = Y pi,j),  0<j<oo. (9.3)
i=0
Riordan (1956 [37]) derived the moments of the marginal distributions. Mean value and

peakedness (variance/mean ratio) of the marginal distributions, i.e. the traffic carried by the
two groups, become:

Primary group:

m = A-{1—E,(A)}, (9.4)
—=7Z = 1-A-{E,_1(A) - E, (A}, (9.5)

Z = 1-F, 1(A)=1—-a,<1.
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Figure 9.3: State transition diagram for Kosten’s system, which has a primary group with n
channels and an unlimited overflow group. The states are denoted by (i, j), where i is the
number of busy channels in the primary group, and j is the number of busy channels in the
overflow group. The mean holding time is chosen as time unit.

where F),_1(A) is the improvement function of Erlang’s B-formula.

Secondary group = Overflow group:
m = A-E,(A), (9.6)

) A
— =7 = 1- >1. 9.7
m m+n+1—A+m_ (9-7)

Experience shows that the peakedness Z is a good measure for the relative blocking proba-
bility a traffic stream with a given mean value is subject to. In Fig. 9.4 we notice that the
peakedness of overflow traffic has a maximum for a fixed traffic and an increasing number of
channels. Peakedness has the dimension [channels|. Peakedness is applicable for theoretical
calculations, but difficult to estimate accurately from observations.

For PCT-I traffic the peakedness is equal to one, and the blocking is calculated by using the
Erlang-B formula. If the peakedness is less than one (9.5), the traffic is called smooth and it
experiences less blocking than PCT-I traffic. If the peakedness is larger than one, then the
traffic is called bursty and it experiences larger blocking than PCT-I traffic. Overflow traffic
is usually bursty (9.7).

Brockmeyer (1954 [10]) derived the state probabilities and moments of a system with a
limited overflow group (Fig. 9.2), which is called Brockmeyer’s system. Bech (1954 [6])
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did the same by using matrix equations, and obtained more complicated and more general
expressions. Brockmeyer’s system is further generalised by Schehrer who also derived higher
order moments for finite overflow groups.

Wallstrom (1966 [101]) calculated state probabilities and moments for overflow traffic of a
generalised Kosten system, where the arrival intensity depends either upon the total number
of calls in the system or the number of calls in the primary group.
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Figure 9.4: Peakedness Z of overflow traffic as a function of number of channels for a fixed
value of the offered traffic. Notice that Z has a maximum. When n becomes large call at-
tempts are seldom blocked and the blocked attempts will be mutually independent. Therefore,
the process of overflowing calls converges to a Poisson process (Chap. 6).

9.2 Equivalent Random Traffic method

This equivalent method is also called the ERT—method, Wilkinson’s method or Wilkinson-
Bretschneider’s method. It was published independently at the same time in USA by Wilkin-
son (1956 [102]) and in Germany by Bretschneider (1956 [¢]). It plays a key role when
dimensioning telecommunication networks.
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Figure 9.5: Application of the ERT-method to a system having g independent traffic streams
offered to a common group of ¢ channels. The aggregated overflow process of the g traffic
streams is said to be equivalent to the traffic overflowing from a single full accessible group
with the same mean and variance of the overflow traffic. (9.8) & (9.9).

9.2.1 Preliminary analysis

Let us consider a group with ¢ channels which is offered g traffic streams (Fig. 9.5). The
traffic streams may for instance be traffic which is offered from other exchanges to a transit
exchange, and therefore they cannot be described by classical traffic models. Thus we do not
know the distributions (state probabilities) of the traffic streams, but we are satisfied (as it
is often the case in applications of statistics) by characterising the i 'th traffic stream by its
mean value m; ; and variance v;. With this simplification we will consider two traffic streams
to be equivalent, if they have same mean value and variance.

The total traffic offered to the group with ¢ channels has the mean value:

g
=1

We assume that the traffic streams are independent (non-correlated), and thus the variance
of the total traffic stream becomes:

v = Zvi . (9.9)

The total traffic is characterised by m and v. So far we assume that m < v. We now consider
this traffic to be equivalent to a traffic flow, which is lost from a full accessible group and
has same mean value m and variance v. In Fig. 9.5 the upper system is replaced by the
equivalent system at the lower part of Fig. 9.5, which is a full accessible system with (n, + ¢)
channels offered the traffic A,. For given values of m and v we therefore solve equations (9.6)
and (9.7) with respect to n and A. It can be shown there that a unique solution exists, and
it will be denoted by (n,, A;).
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The lost traffic is found from the Erlang’s B-formula:

Ay=A, En 0 (Ay) . (9.10)
As the offered traffic is m, the traffic congestion of the system becomes:
A
c==t (9.11)
m

Notice: the blocking probability is not E,, ,(A,). We should remember the last step (9.11),
where we relate the lost traffic to the originally offered traffic, which in this case is given by
m (9.8).

We notice that if the overflow traffic is from a single primary group with PCT-I traffic, then
the method is exact. In the general case with more traffic streams the method is approximate,
and it does not yield the exact mean blocking probability.

Example 9.2.1: Paradox

In Sec. 6.3 we derived Palm’s theorem, which states that by superposition of many independent
arrival processes, we locally get a Poisson process. This is not contradictory with (9.8) and (9.9),
because these formulee are valid globally. O

9.2.2 Numerical aspects

When applying the ERT-method we need to calculate (m,v) for given values of (A,n) and
vice versa. It is easy to obtain (m,v) for given (A, n) by using (9.4) & (9.5). To obtain (A, n)
for given (m,v), we have to solve two equations with two unknown. It requires an iterative
procedure, since F,(A) cannot be solved explicitly with respect to neither n nor A (Sec. 7.5).
However, we can solve (9.7) with respect to n:

U
m+m

n=A.— m _
m+ - —1

—m—1, (9.12)

so that we know n for given A. Thus A is the only independent variable. We can use Newton-
Raphson’s iteration method to solve the remaining equation, introducing the function:

F(A) =m—A-E,(A) =0.

For a proper starting value Ay we improve this iteratively until the resulting values of m and
v/m become close enough to the known values.

Yngvé Rapp (1965 [36]) has proposed a good approximate solution for A, which can be used
as initial value Ag in the iteration:

sz+3-%-{1—1}. (9.13)
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From A we get n, using (9.12). Rapp’s approximation is sufficient accurate for practical
applications, except when A, is very small. The peakedness Z = v/m has a maximum,
obtained when n is little larger than A (Fig. 9.4). For some combinations of m and v/m the
convergence is critical, but when using computers we can always find the correct solution.

Using computers we operate with non-integral number of channels, and only at the end of
calculations we choose an integral number of channels greater than or equal to the obtained
results (typical a module of a certain number of channels (8 in GSM, 30 in PCM, etc.). When
using tables of Erlang’s B—formula, we should in every step choose the number of channels
in a conservative way so that the blocking probability aimed at becomes worst case.

The above-mentioned method presupposes that v/m is larger than one, and so it is only
valid for bursty traffic. Individual traffic stream in Fig. 9.5 are allowed to have v;/m; < 1,
provided the total aggregated traffic stream is bursty. Bretschneider ([9], 1973) has extended
the method to include a negative number of channels during the calculations. In this way it
is possible to deal with smooth traffic (EERT-method = Extended ERT method).

9.2.3 Parcel blocking probabilities

The individual traffic streams in Fig. 9.5 do not have the same mean value and variance, and
therefore they do not experience equal blocking probabilities in the common overflow group
with ¢ channels. From the above we calculate the mean blocking (9.11) for all traffic streams
aggregated. Experiences show that the blocking probability experienced is proportional to
the peakedness Z = v/m. We can split the total lost traffic into individual lost traffic parcels
by assuming that the traffic lost for stream i is proportional to the mean value m; and to the
peakedness Z; = v;/m; of the stream. We obtain:

g
Ay = ZAé,i
=1

g
Z v;
fry C - AZ . ml,i . -
1,

i=1

= c-Ay-v,
from which we find the constant ¢ = 1/v.

The (traffic) blocking probability for traffic stream 4, which is called the parcel blocking
probability for stream ¢, then becomes:

_ Aug

my;
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Furthermore, we can divide the blocking among the individual groups (primary, secondary,
etc.). Consider the equivalent group at the bottom of Fig. 9.5 with n, primary channels
and ¢ secondary (overflow) channels, we can calculate the blocking probability due to the
n, primary channels, and the blocking probability due to the ¢ secondary channels. The
probability that the traffic is lost by the ¢ channels is equal to the probability that the traffic
is lost by the n, + ¢ channels, under the condition that the traffic is offered to the ¢ channels:

CABya(d)  Bua(A)

H(l) = = 1
0 A-E, (A) E, (A) (9.15)
The total loss probability can therefore be related to the two groups:
En l(A)
Epi(A) = B, (A) =202 1

By using this expression, we can find the blocking for each channel group and then for example
obtain information about which group should be increased by adding more channels.

Example 9.2.2: Example 9.1.1 continued
In example 9.1.1 the blocking probability of the primary group of 8 channels is Fg(10) = 0.3383.
The blocking of the overflow group is

_ Ei6(10) _ 0.02231

H®) FEg(10)  0.3383

= 0.06592.

The total blocking of the system is:
E16(10) = Eg(10) - H(8) = 0.3383 - 0.06592 = 0.02231 .

Example 9.2.3: Hierarchical cellular system

We consider a cellular system HCS covering three areas. The traffic offered in the areas are 12,
8 and 4 erlang, respectively. In the first two cells we introduce micro-cells with 16, respectively
8 channels, and a common macro-cell covering all three areas is allocated 8 channels. We allow
overflow from micro-cells to macro-cells, but do not rearrange the calls from macro- to micro-cells
when a channel becomes idle. Furthermore, we look away from hand-over traffic. Using (9.6) &
(9.7) we find the mean value and the variance of the traffic offered to the macro-cell:

Cell | Offered | Number of | Overflow | Overflow | Peakedness
traffic channels mean variance
{ A; n;i(J) mi ; Z;
1 12 16 0.7250 1.7190 2.3711
2 8 8 1.8846 3.5596 1.8888
3 4 0 4.0000 4.0000 1.0000
Total 24 6.6095 9.2786 1.4038




176 CHAPTER 9. OVERFLOW THEORY

The total traffic offered to the macro-cell has mean value 6.61 erlang and variance 9.28. This
corresponds to the overflow traffic from an equivalent system with 10.78 erlang offered to 4.72
channels. Thus we end up with a system of 12.72 channels offered 10.78 erlang. Using the Erlang-B
formula, we find the lost traffic 1.3049 erlang. Originally we offered 24 erlang, so the total traffic
blocking probability becomes B = 5.437%.

The three areas have individual blocking probabilities. Using (9.14) we find the approximate lost
traffic from the areas to be 0.2434 erlang, 0.5042 erlang, and 0.5664 erlang, respectively. Thus the
traffic blocking probabilities become 2.03%, 6.30% and 14.16%, respectively. A computer simulation
with 100 million calls yields the blocking probabilities 1.77%, 5.72%, and 15.05%, respectively. This
corresponds to a total lost traffic equal to 1.273 erlang and a blocking probability 5.30%. The
accuracy of the method of this chapter is sufficient for real applications. O

9.3 Fredericks & Hayward’s method

Fredericks (1980 [29]) has proposed an equivalence method which is simpler to use than
Wilkinson-Bretschneider’s method. The motivation for the method was first put forward by
W.S. Hayward.

Fredericks & Hayward’s equivalence method also characterises the traffic by mean value A
and peakedness Z (0 < Z < 00) (Z = 01is a trivial case with constant traffic). The peakedness
(7.7) is the ratio between the variance v and the mean value m; of the state probabilities,
and it has the dimension [channels]. For random traffic (PCT-I) we have Z =1 and we can
apply the Erlang-B formula.

For peakedness Z # 1 Fredericks & Hayward’s method proposes that the system has the same
blocking probability as a system with n/Z channels, offered traffic A/Z, and thus peakedness
Z =1. For the latter system we may apply the Erlang—B formula:

n A A

When Z = 1 we assume the traffic is PCT-I and apply Erlang’s B—formula for calculating the
congestion. It is the traffic congestion we obtain when using the method (cf. Sec. 9.3.1). For
fixed value of the blocking probability in the Erlang-B formula we know (Fig. 7.4) that the
utilisation increases, when the number of channels increases: the larger the system, the higher
utilisation for a fixed blocking probability. Fredericks & Hayward’s method thus expresses
that if the traffic has a peakedness Z larger than PCT-I traffic, then we get a lower utilisation
than the one obtained by using Erlang’s B-formula. If peakedness Z < 1, then we get a higher
utilisation.

We avoid solving the equations (9.6) and (9.7) with respect to (A,n) for given values of
(m,v). The method can easily be applied for both peaked and smooth traffic. In general we
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get an non-integral number of channels and thus need to evaluate the Erlang-B formula for
a continuous number of channels.

Basharin & Kurenkov has extended the method to comprise multi-slot (multi-rate) traffic,
where a call requires d channels from start to termination. If a call uses d channels in stead of
one (change of scale), then the mean value becomes d times bigger and the variance d? times
bigger. Therefore, the peakedness becomes d times bigger. In stead of reducing number of
channels by the factor Z, we may fix the number of channels and make the slot-size Z times
bigger:

(n, A, Z, d) ~ (n % 1, d.Z) ~ (% %, 1, d> . (9.18)

If we have more traffic streams offered to the same group, then it may be an advantage to
keep the number of channels fixed, but then we get the problem that d- Z in general will not
be integral.

Example 9.3.1: Fredericks & Hayward’s method

If we apply Fredericks & Hayward’s method to example 9.2.3, then the macro-cell has (8/1.4038)
channels and is offered (6.6095/1.4038) erlang. The blocking probability is obtained from Erlang’s
B-formula and becomes 0.19470. The lost traffic is calculated from the original offered traffic (6.6095
erlang) and becomes 1.2871 erlang. The blocking probability of the system becomes E = 1.2871/24
= 5.36%. This is very close to the result obtained (5.44%) by the ERT-method. O

Example 9.3.2: Multi-slot traffic

We shall later consider service-integrated system with multi-rate (multi-slot) traffic. In exam-
ple 10.4.3 we consider a trunk group with 1536 channels, which is offered 24 traffic streams with
individual slot-size and peakedness. The exact total traffic congestion is equal to 5.950%. If we
calculate the peakedness of the offered traffic by adding all traffic streams, then we find peakedness
Z = 9.8125 and a total mean value equal to 1536 erlang. Fredericks & Hayward’s method results
in a total traffic congestion equal to 6.114%, which thus is a conservative estimate (worst case). O

9.3.1 Traffic splitting

In the following we shall give a natural interpretation of Fredericks & Hayward’s method and
at the same time discuss splitting of traffic streams. We consider a traffic stream with mean
value A, variance v, and peakedness Z = v/A. We split this traffic stream into ¢ identical
sub-streams. A single sub-stream then has the mean value A/g and peakedness Z/g because
the mean value is reduced by a factor g and the variance by a factor g? (Example 3.3.2). If
we choose the number of sub-streams ¢ equal to Z, then we get the peakedness Z =1 for each
sub-stream.

Let us assume the original traffic stream is offered to n channels. If we also split the n
channels into g sub-group (one for each sub-stream), then each subgroup has n/g channels.
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Each sub-group will then have the same blocking probability as the original total system. By
choosing g=Z we get peakedness Z =1 in the sub-streams, and we may (approximately) use
Erlang’s B—formula for calculating the blocking probability.

This is a natural interpretation of Fredericks & Hayward’s method. It can easily be extended
to comprise multi—slot traffic. If every call requires d channels during the whole connection
time, then by splitting the traffic into d sub-streams each call will use a single channel in
each of the d sub-groups, and we will get d identical systems with single-slot traffic.

The above splitting of the traffic into ¢ identical traffic streams shows that the blocking
probability obtained by Fredericks-Hayward’s method is the traffic congestion. The equal
splitting of the traffic at any point of time implies that all g traffic streams are identical and
thus have the mutual correlation one. In reality, we cannot split circuit switched traffic into
identical sub-streams. If we have g=2 streams and three channels are busy at a given point of
time, then we will for example use two channels in one sub-stream and one in the other, but
anyway we obtain the same optimal utilisation as in the total system, because we always will
have access to an idle channel in any sub-group (full accessibility). The correlation between
the sub-streams becomes smaller than one. The above is an example of using more intelligent
strategies so that we maintain the optimal full accessibility.

In Sec. 6.3.2 we studied the splitting of the arrival process when the splitting is done in a
random way (Raikov’s theorem 6.2). By this splitting we did not reduce the variation of the
process when the process is a Poisson process or more regular. The resulting sub-stream point
processes converge to Poisson processes. In this section we have considered the splitting of the
traffic process, which includes both the arrival process and the holding times. The splitting
process depends upon the state. In a sub-process, a long holding time of a single call will
result in fewer new calls in this sub-process during the following time interval, and the arrival
process will no longer be a renewal process.

Most attempts of improving Fredericks & Hayward’s equivalence method are based on re-
ducing the correlation between the sub-streams, because the arrival processes for a single
sub-stream is considered as a renewal process, and the holding times are assumed to be
exponentially distributed. From the above we see that these approaches are deemed to be
unsuccessful, because they will not result in an optimal traffic splitting. In the following ex-
ample we shall see that the optimal splitting can be implemented for packet switched traffic
with constant packet size.

If we split a traffic stream into a sub-stream so that a busy channel belongs to the sub-stream
with probability p, then it can be shown that the sub-stream has peakedness Z, given by:

Zp:1+p'(Z_1)7
where Z is the peakedness of the original stream. From this random splitting of the traffic

process we see that the peakedness converges to one, when p becomes small. This corresponds
to a Poisson process and this result is valid for any traffic process.
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Example 9.3.3: Inverse multiplexing

If we need more capacity in a network than what corresponds to a single channel, then we may
combine more channels in parallel. At the originating source we may then distribute the traffic
(packets or cells in ATM) in a cyclic way over the individual channels, and at the destination we
reconstruct the original information. In this way we get access to higher bandwidth without leasing
fixed broadband channels, which are very expensive. If the traffic parcels are of constant size,
then the traffic process is split into a number of identical traffic streams, so that we get the same
utilisation as in a single system with the total capacity. This principle was first exploited in a Danish
equipment (Johansen & Johansen & Rasmussen, 1991 [53]) for combining up to 30 individual 64
Kbps ISDN connections for transfer of video traffic for maintenance of aircrafts.

Today, similar equipment is applied for combining a number of 2 Mbps connections to be used
by ATM-connections with larger bandwidth (IMA = Inverse Multiplexing for ATM) (Techguide,
2001 [96]), (Postigo—Boix & Garcia-Haro & Aguilar-Igartua, 2001 [33]). O

9.4 Other methods based on state space

From a blocking point of the view, the mean value and variance do not necessarily characterise
the traffic in the optimal way. Other parameters may better describe the traffic. When
calculating the blocking with the ERT-method we have two equations with two unknown
variables (9.6 & 9.7). The Erlang loss system is uniquely defined by the number of channels
and the offered traffic A,. Therefore, it is not possible to generalise the method to take
account of more than two moments (mean & variance).

9.4.1 BPP traffic models

The BPP-traffic models describe the traffic by two parameters, mean value and peakedness,
and are thus natural candidates to model traffic with two parameters. Historically, however,
the concept and definition of traffic congestion has due to earlier definitions of offered traffic
been confused with call congestion. As seen from Fig. 8.6 only the traffic congestion makes
sense for overflow calculations. By proper application of the traffic congestion, the BPP-
model is very applicable.

Example 9.4.1: BPP traffic model

If we apply the BPP—model to the overflow traffic in example 9.2.3 we have A = 6.6095 and Z =
1.4038. This corresponds to a Pascal traffic with S = 16.37 sources and 5 = 0.2876. The traffic
congestion becomes 20.52% corresponding to a lost traffic 1.3563 erlang, or a blocking probability
for the system equal to F = 1.3563/24 = 5.65%. This result is quite accurate. )
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9.4.2 Sanders’ method

Sanders & Haemers & Wilcke (1983 [93]) have proposed another simple and interesting equiv-
alence method also based on the state space. We will call it Sanders’ method. Like Fred-
ericks & Hayward’s method, it is based on a transformation of state probabilities so that
the peakedness becomes equal to one. The method transforms a non—Poisson traffic with
(mean, variance) = (m,v) into a traffic stream with peakedness one by adding a constant
(zero—variance) traffic stream with mean v —m so that the total traffic has mean equal to
variance v. The constant traffic stream occupies v—m channels permanently (with no loss)
and we increase the number of channels by this amount. In this way we get a system with
n+ (v—m) channels which are offered the traffic m+(v—m) = v erlang. The peakedness
becomes one, and the blocking probability is obtained using Erlang’s B-formula, and so we
find the traffic lost from the equivalent system. This lost traffic is divided by the originally
offered traffic to obtain the traffic congestion C.

The blocking probability relates to the originally offered traffic m. The method is applicable
for both both smooth m > v and bursty traffic m < v and requires only the evaluation of the
Erlang—B formula with a continuous number of channels.

Example 9.4.2: Sanders’ method

If we apply Sanders’ method to example 9.2.3, we increase both the number of channels and the
offered traffic by v — m = 2.6691 (channels/erlang) and thus have 9.2786 erlang offered to 10.6691
channels. From Erlang’s B-formula we find the lost traffic 1.3690 erlang, which is on the safe side,
but close to the results obtained above. It corresponds to a blocking probability E = 1.3690/24 =
5.70%. O

9.4.3 Berkeley’s method

To get an ERT-method based on only one parameter, we can in principle keep either n
or A fixed. Experience shows that we obtain the best results by keeping the number of
channels fixed n, = n. We are now in the position where we only can ensure that the
mean value of the overflow traffic is correct. This method is called Berkeley’s equivalence
method (1934). Wilkinson-Bretschneider’s method requires a certain amount of computations
(computers), whereas Berkeley’s method is based on Erlang’s B-formula only. Berkeley’s
method is applicable only for systems, where the primary groups all have the same number
of channels.

Example 9.4.3: Group divided into primary and overflow group
If we apply Berkeley’s method two example 9.1.1, then we get the exact solution, and from this
special case originates the idea of the method. O
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Example 9.4.4: Berkeley’s method

We consider example 9.2.3 again. To apply Berkeley’s method correctly, we should have the same
number of channels in all three micro-cells. Let us assume all micro-cells have 8 channels (and not
16, 8, 0, respectively). To obtain the overflow traffic 6.6095 erlang the equivalent offered traffic is
13.72 erlang to the 8 primary channels. The equivalent system then has a traffic 13.72 erlang offered
to (848 =) 16 channels. The lost traffic obtained from the Erlang-B formula becomes 1.4588 erlang
corresponding to a blocking probability 6.08%, which is a value a little larger than the correct value.
In general, Berkeley’s method will be on the safe side. O

9.5 Methods based on arrival processes

The models in Chaps. 7 & 8 are all characterised by a Poisson arrival process with state
dependent intensity, whereas the service times are exponentially distributed with equal mean
value for all (homogeneous) servers. As these models all are independent of the service
time distribution (insensitive, i.e. the state probabilities only depend on the mean value of
the service time distribution), then we may only generalise the models by considering more
general arrival processes. By using general arrival processes the insensitivity property is lost
and the service time distribution becomes important. As we only have one arrival process, but
many service processes (one for each of the n servers), then we in general assume exponential
service times to avoid complex models.

9.5.1 Interrupted Poisson Process

In Sec. 6.4 we considered Kuczura’s Interrupted Poisson Process (IPP) (Kuczura, 1977 [71]),
which is characterised by three parameters and has been widely used for modelling overflow
traffic. If we consider a full accessible group with n servers, which are offered calls arriving
according to an IPP (cf. Fig. 6.7) with exponentially distributed service times, then we can
construct a state transition diagram as shown in Fig. 9.6. The diagram is two-dimensional.
State (7, ) denotes that there are i calls being served (i = 0,1,...,n), and that the arrival
process is in phase j (j = a: arrival process on, j = b: arrival process off). By using the
node balance equations we find the equilibrium state probabilities p(i, j).

Time congestion E becomes:

E = p(na) + p(nd). (9.19)
Call congestion B becomes:
B = f(ﬂ > E. (9.20)
plia)
=0

Traffic congestion C' is defined as the proportion of the offered traffic which is lost. The
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Figure 9.6: State transition diagram for a full accessible loss system with n servers, IPP
arrival process (cf. Fig. 6.7) and exponentially distributed service times (1).

offered traffic is equal to:

w
w+y

_ plom)
p(on) + p(off)

A A
I n

The carried traffic is: .
Y = i {plia) + p(ib)} . (9.21)

i=0
From this we obtain C' = (A — Y)/A. In fact, the traffic congestion will be equal to the call

congestion as the arrival process is a renewal process. But this is difficult to derive from the
above. As shown in Sec. 6.4.1 the inter-arrival times are hyper-exponentially Hy distributed.

9.5.2 Cox—2 arrival process

In Sec. 6.4 we noticed that a Cox—2 arrival process is more general than an IPP (Kuczura,
1977 [71]). If we consider Cox—2 arrival processes as shown in Fig. 4.10, then we get the state
transition diagram shown in Fig. 9.7. From this we find under the assumption of statistical
equilibrium the state probabilities and the following performance measures.

Time congestion E:
E = p(na) + p(nb) . (9.22)

Call congestion B:

pA1-p(na) + A - p(nbd)

pAi- Y plia) + X+ Y plib)
=0 1=0

Traffic congestion C'. The offered traffic is the average number of call attempts per mean
service time. The mean inter-arrival time is:

B:

(9.23)

1 X+(1-pA
ma:—+(1—p)'>\—2: 2 )(\1/\2]9)1.
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Figure 9.7: State transition diagram for a full accessible loss system with n servers, Cox—2
arrival processes (cf. Fig. 4.10) and exponentially distributed service times ().
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The offered traffic then becomes A = (m, - ) ~*. The carried traffic is given by (9.21) applied
to Fig. 9.7 and thus we can find the traffic congestion C'.

If we generalise the arrival process to a Cox—k arrival process, then the state-transition
diagram is still two-dimensional. By the application of Cox—distributions we can in principle
take any number of parameters into consideration.

If we generalise the service time to a Cox—k distribution, then the state transition diagram
becomes much more complex for n > 1, because we have a service process for each server,
but only one arrival process. Therefore, in general we always generalise the arrival process
and assume exponentially distributed service times.

2006-03-22
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Chapter 10

Multi-Dimensional Loss Systems

In this chapter we generalise the classical teletraffic theory to deal with service-integrated
systems (ISDN and B-ISDN). Every class of service corresponds to a traffic stream. Several
traffic streams are offered to the same trunk group.

In Sec. 10.1 we consider the classical multi-dimensional Erlang-B loss formula. This is an
example of a reversible Markov process which is considered in more details in Sec. 10.2.
In Sec. 10.3 we look at more general loss models and strategies, including service-protection
(maximum allocation) and multi-slot BPP-traffic. The models all have the so-called product-
form property, and the numerical evaluation is very simple by using the convolution algorithm
for loss systems, implemented in the tool ATMOS (Sec. 10.4). In Sec. 10.5 we review other
algorithms for the same problem.

The models considered are all based on flexible channel/slot allocation. They can be gen-
eralised to arbitrary circuit switched networks with direct routing, where we calculate the
end-to-end blocking probabilities (Chap. 11). All models considered are insensitive to the ser-
vice time distribution, and thus they are robust for applications. At the end of the chapter
we consider other algorithms.

10.1 Multi-dimensional Erlang-B formula

We consider a group of n trunks (channels, slots), which is offered two independent PCT-I
traffic streams: (Aq, p1) and (Ao, o). The offered traffic becomes A; = A;/uq, respectively

Ag = )\2/“2.

Let (i,7) denote the state of the system, i.e. ¢ is the number of calls from stream 1 and j is
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the number of calls from stream 2. We have the following restrictions:

0 < < n,

0<j < n, (10.1)

0 <i4+j5 < n.

The state transition diagram is shown in Fig. 10.1. Under the assumption of statistical
equilibrium the state probabilities are obtained by solving the global balance equations for
each node (node equations), in total (n + 1)(n + 2)/2 equations.

As we shall see in the next section, this diagram corresponds to a reversible Markov process,
which has local balance, and furthermore the solution has product form. We can easily show
that the global balance equations are satisfied by the following state probabilities which may
be written on product form:

p(i,j) = p(i)-p(j)

Al A
where p(i) and p(j) are one-dimensional truncated Poisson distributions, @ is a normalisation
constant, and (4, 7) fulfil the above restrictions (10.1). As we have Poisson arrival processes,
which have the PASTA-property (Poisson Arrivals See Time Averages), the time congestion,
call congestion, and traffic congestion are all equal for both traffic streams, and they equals

P(i+j=n).

By the Binomial expansion or by convolving two Poisson distributions we find the following
aggregated state probabilities, where () is obtained by normalisation:

(A + Ay)*

plitj=a) = Q ————, (10.3)
-1 - (Al + AZ)V
Q' = Z_; — (10.4)
This is the Truncated Poisson distribution (7.9) with the offered traffic:

We may also interpret this model as an Erlang loss system with one Poisson arrival process
and hyper-exponentially distributed holding times in the following way. The total arrival
process is a superposition of two Poisson processes with the total arrival rate:

A=A+ A, (10.6)
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Figure 10.1: Two-dimensional state transition diagram for a loss system with n channels
which are offered two PCT-I traffic streams. This is equivalent to a state transition diagram
for the loss system M/H,/n, where the hyper-exponential distribution Hy is given by (10.7).
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and the holding time distribution is hyper-exponentially distributed:

A1 A2
DYDY A+ Ao
We weight the two exponential distributions according to the relative number of calls per
time unit. The mean service time is

)\1 1 )\2 1 . A1+A2

f(t) Sy et C g e Het (10.7)

A VIS VYR VI VRS WD Vil
A

which is in agreement with the offered traffic.

Thus we have shown that Erlang’s loss model is valid for hyper-exponentially distributed
holding times. This is a special case of the general insensitivity property of Erlang’s B—
formula.

We may generalise the above model to N traffic streams:

Al A2 AN

P Y 1 2 N
p<2177/27"',ZN):Q"—‘-.—‘ ..... -
13- 12: IN'

WE

0<i;<n, i, <n, (10.9)

j=1
which is the general multi-dimensional Erlang-B formula. By a generalisation of (10.3) we
notice that the global state probabilities can be calculated by the following recursion, where
q(z) denotes the relative state probabilities, and p(x) denotes the absolute state probabilities:

o) = 23 Arale—1), a0)=1, (10.10)

Q) = > ali).

o) = 9 g (10.11)

Q) "=TE
If we use the recursion with normalisation (Sec. 7.4), then we get the recursion formula for
Erlang-B. Formula (10.10) is similar to the balance equations for the Poisson case when:

N
A=A
j=1

The time congestion is E = p(n), and as the PASTA-property is valid, this is also equal to
the call congestion and the traffic congestion. The numerical evaluation is dealt with in detail
in Sec. 10.4. Multi-dimensional systems were first mentioned by Erlang and more thoroughly
dealt with by Jensen in the Erlangbook (Jensen, 1948 [19]).
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10.2 Reversible Markov processes

In the previous section we considered a two-dimensional state transition diagram. For an
increasing number of traffic streams the number of states (and thus equations) increases
very rapidly. However, we may simplify the problem by exploiting the structure of the state
transition diagram. Let us consider the two-dimensional state transition diagram shown in
Fig. 10.2. The process is reversible if there is no circulation flow in the diagram. Thus, if we
consider four neighbouring states, then the flow in clockwise direction must equal the flow in
the opposite direction (Kingman, 1969 [64]), (Sutton, 1980 [95]). From Fig. 10.2 we have:

Clockwise:
i+1,5+1] — [i+1,7]: P(Z+1 J+1) pa(i+1,7+1)
[i+1,7] — [i,j]: p(i+1,7) - p(i+1,5),
Counter clockwise:
i+1,5] — [i+1,j+1]: p(l+1 J) A2(i+1, )
i+1,7+1] — [i,j+1]: p(H—l J+1) - (i+1,541)

We can reduce both expressions by the state probabilities and then obtain the condition given
by (10.12). It can be shown that a necessary and sufficient condition for reversibility is that
the following two expressions are equal:

Clockwise:

Counter clockwise:
A(,7) - Aa(i+1,7) - pa (i1, j41) - po(i, j+1).

If these two expressions are equal, then there is local or detailed balance. A necessary
condition for reversibility is thus that if there is a flow (an arrow) from state i to state j,
then there must also be a flow (an arrow) from j to i. We may locally apply cut equations
between any two connected states. Thus from Fig. 10.2 we get:

We can express any state probability p(i, j) by state probability p(0,0) by choosing any path
between the two states (Kolmogorov’s criteria). We may for instance choose the path:

(0,0),(1,0),...,(z,0), (4,1),...,(i,7),
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Figure 10.2: Kolmogorov’s criteria: a necessary and sufficient condition for reversibility of a
two-dimensional Markov process is that the circulation flow among four neighbouring states
in a square equals zero: Flow clockwise = flow counter-clockwise (10.12).

and we then obtain the following balance equation:

M(0,0) M(L,0)  M(E=1,00 Xa(5,0) Ao(i,1)  Ao(ij—1)

T TG R G A AV R 1 BT e
We find p(0,0) by normalisation of the total probability mass.
The condition for reversibility will be fulfilled in many cases, for example for:
M) =MG) i) =i (10.14)
Aa2(i, J) = Aa(J) p2(i, ) = J - pia - (10.15)

If we consider a multi-dimensional loss system with NV traffic streams, then any traffic stream
may be a state-dependent Poisson process, in particular BPP (Bernoulli, Poisson, Pascal)
traffic streams. For N-dimensional systems the conditions for reversibility are analogue to
(10.12). Kolmogorov’s criteria must still be fulfilled for all possible paths. In practice, we
experience no problems, because the solution obtained under the assumption of reversibility
will be the correct solution if and only if the node balance equations are fulfilled. In the
following section we use this as the basis for introducing a very general multi-dimensional
traffic model.
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10.3 Multi-Dimensional Loss Systems

In this section we consider generalisations of the classical teletraffic theory to cover several
traffic streams offered to a single channel/trunk group. Each traffic stream may have in-
dividual parameters and may be state-dependent Poisson arrival processes with multi-slot
traffic and class limitations. This general class of models is insensitive to the holding time
distribution, which may be class dependent with individual parameters for each class. We
introduce the generalisations one at a time and present a small case-study to illustrate the
basic ideas.

10.3.1 Class limitation

In comparison with the case considered in Sec. 10.1 we now restrict the number of simulta-
neous calls for each traffic stream (class). Thus, we do not have full accessibility, but unlike
overflow systems where we physically only have access to specific channels, then we now have
access to all channels, but at any instant we may only occupy a limited number. This may
be used for the purpose of service protection (virtual circuit protection = class limitation =
threshold priority policy). We thus introduce restrictions to the number of simultaneous calls
in class j as follows:

<n; <n, j=12...N, (10.16)

where

N
E n; >n.
Jj=1

If the latter restriction is not fulfilled, then we get separate groups corresponding to N ordi-
nary independent one-dimensional loss systems. Due to the restrictions the state transition
diagram is truncated. This is shown for two traffic streams in Fig. 10.3.

We notice that the truncated state transition diagram still is reversible and that the value of
p(i, j) relative to the value p(0,0) is unchanged by the truncation. Only the normalisation
constant is modified. In fact, due to the local balance property we can remove any state
without changing the above properties. We may consider more general class limitations to
sets of traffic streams so that any traffic stream has a minimum (guaranteed) number of
allocated channels.

10.3.2 Generalised traffic processes

We are not restricted to consider PC'T-I traffic only as in Sec. 10.1. Every traffic stream may
be a state-dependent Poisson arrival process with a linear state-dependent death (departure)
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Figure 10.3: Structure of the state transition diagram for two-dimensional traffic processes
with class limitations (cf. 10.16). When calculating the equilibrium probabilities, state (i, j)
can be expressed by state (i,j — 1) and recursively by state (i,0), (i — 1,0), and finally by
(0,0) (cf. (10.14)).

rate (cf. (10.14) and (10.15)). The system still fulfils the reversibility conditions given by
(10.12). Thus, the product form still exists for BPP traffic streams and more general state-
dependent Poisson processes. If all traffic streams are Engset— (Binomial-) processes, then
we get the multi-dimensional Engset formula (Jensen, 1948 [19]). As mentioned above, the
system is insensitive to the holding time distributions. Every traffic stream may have its own
individual holding time distribution.

10.3.3 Multi-slot traffic

In service-integrated systems the bandwidth requested may depend on the type of service.
Thus a voice telephone call requires one channel (slot) only, whereas for example a video
service may require d channels simultaneously. We get the additional restrictions:

0<d;j-i; <nj <n, j=12,...,N, (10.17)
and
N
0<> dj-i; <n, (10.18)
j=1

where i; is the actual number of type j calls. The resulting state transition diagram will still
be reversible and have product form. The restrictions correspond for example to the physical
model shown in Fig. 10.5.
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Stream 1: PCT-I traffic Stream 2: PCT-II traffic
A1 = 2 calls/time unit So = 4 sources
72 = 1/3 calls/time unit/idle source
p1 =1 (time units™!) po =1 (time units~!)
B2 = v2/u2 = 1/3 erlang per idle source
Z1 =1 (peakedness) Zy =1/(1+ P2) = 3/4 (peakedness)
d; =1 channel/call dy = 2 channels/call
A1 = A1/ = 2 erlang Ay = S - B2/(1+ [2) =1 erlang
n=6=n no=6=n

Table 10.1: Two traffic streams: a Poisson traffic process (Example 7.5.1) and a Binomial traffic
process (Example 8.5.1) are offered to the same trunk group.

Offered traffic A; is usually defined as the average number of call attempts per mean holding
time. If we measure the carried traffic Y; as the average number of busy channels, then the
lost traffic measured in channels becomes:

N N
A=) Ajd; =YY (10.19)
j=1 i=1

Example 10.3.1: Ronnblom’s model

The first example of a multi-slot traffic model was published by Rénnblom (1958 [92]). The
paper considers external (outgoing and incoming) traffic and internal traffic in a PABX telephone
exchange with both-way channels. The external traffic occupies only one channel per call. The
internal traffic occupies both an outgoing channel and an incoming channel and thus requires two
channels simultaneously. Ronnblom showed that this model has product form. O

Example 10.3.2: Two traffic streams

Let us illustrate the above models by a small case-study. We consider a trunk group of 6 channels
which is offered two traffic streams specified in Tab. 10.1. 'We notice that the second traffic stream
is a multi-slot traffic stream. We may at most have three type-2 calls in our system. We only need
to specify the offered traffic, not the absolute values of arrival rate and service rate. The offered
traffic is as usually defined as the traffic carried by an infinite trunk group.

We get the two-dimensional state transition diagram shown in Fig. 10.4. The total sum of all
relative state probabilities equals 20.1704. So by normalisation we find p(0,0) = 0.0496 and thus
the following state probabilities and marginal state probabilities p(i,-) and p(-, 7).
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Figure 10.4: Example 10.3.2: Six channels are offered both a Poisson traffic stream (PCT-I)
(horizontal states) and an Engset traffic stream (PCT-II) (vertical states). The parameters are
specified in Tab. 10.1. If we allocate state (0,0) the relative value one, then we find by exploiting
local balance the relative state probabilities q(i,j) shown below.
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p(i,j) | i=0 i=1 i=2 i=3 i=4 i=5 i=6 |p(-,j)

J= 0.0073 0.0073
J= 0.0331 0.0661 0.0661 0.1653
j=2 10.0661 0.1322 0.1322 0.0881 0.0441 0.4627

j=0 100496 0.0992 0.0992 0.0661 0.0331 0.0132 0.0044 | 0.3647

p(i,-) | 0.1561 0.2975 0.2975 0.1542 0.0771 0.0132 0.0044 | 1.0000

p(0) = p(0,0) = 0.0496
p(1) = p(1,0) = 0.0992
p(2) = p(0,2) + p(2,0) = 0.1653
p(3) = p(1,2) + p(3,0) = 0.1983
p(4) = p(0,4) +p(2,2) + p(4,0) = 0.1983
p(5) = p(1,4) + p(3,2) + p(5,0) = 0.1675
p(6) = p(0,6) + p(2,4) + p(4,2) + p(6,0) = 0.1219

Performance measures for traffic stream 1:

Due to the PASTA-property the time congestion (F7), the call congestion (B;), and the traffic
congestion (C1) are identical. We find the time congestion Ej:

E, = p(G,O) +p(47 2) +p(274) +p(03 6)

= p(6),
E, = By = C; =0.1219,
Y, = 1.7562.

Performance measures for stream 2:
Time congestion Fy (proportion of time the system is blocked for stream 2):
Ey = p(0,6) +p(1,4) +p(2,4) + p(3,2) + p(4,2) + p(5,0) + p(6,0)
= p(5) +p(6),
FEy = 0.2894.

Call congestion By (Proportion of call attempts blocked for stream 2):
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The total number of call attempts per time unit is obtained from the marginal distribution:

4 3 2 1
= - .0.3647+ > -0.4627+ = -0.1 0.
a;t 5 0-3647 + 204627 + 2+ 0.1653 + - 0.0073

= 1.0616.

The number of blocked call attempts per time unit becomes:
4 3 2 1
pe = 5 p(5,0)+ (6,00} + 5 {p(3,2) + p(4,2)} + S - {p(1,4) + 92,0} + 5 - p(0,6)

= 0.2462.

Hence: .
By = =X —0.2320.

Tt

Traffic congestion Cy (Proportion of offered traffic blocked):

The carried traffic, measured in the unit [channel], is obtained from the marginal distribution:

Yo = 2-0.4627+4-0.1653 + 6 - 0.0073,

Yo, = 1.6306 erlang.

The offered traffic, measured in the unit [channel], is ds - Ao = 2 erlang (Tab. 10.1). Hence we get:

2 —1.6306
Cy = — = 0.1848.

The above example has only 2 streams and 6 channels and the total number of states equals
16 (Fig. 10.4). When the number of traffic streams and channels increase, then the number
of states increases very fast and we are unable to evaluate the system by calculating the
individual state probabilities. In the following section we introduce the convolution algorithm
for loss systems which eliminates this problem by aggregation of states.

10.4 Convolution Algorithm for loss systems

We now consider a trunk group with a total of n homogeneous trunks. Being homogeneous
means that they have the same service rate. The trunk group is offered N different types
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of calls, also called streams, or classes. A call of type i requires d; trunks (channels, slots)
during the whole service time, i.e. all d; channels are occupied and released simultaneously.
The arrival processes are general state-dependent Poisson processes. For the i'th arrival
process the arrival intensity in state x; - d;, that is, when x; calls of type ¢ are being served,
is \;(x;). We may restrict the number z; of simultaneous calls of type i so that:

0 < x-di <n <n.

It will be natural to require that n; is an integral multiple of d;. This model describes for
example the system shown in Fig. 10.5.

Al; Z17 dl
A27 Z?? d2
- )
H
)\N7 ZN) dN
L;
Local exchanges Transit exchange Destination exchange

Figure 10.5: Generalisation of the classical teletraffic model to BPP—traffic and multi-slot
traffic. The parameters \; and Z; describe the BPP—traffic, whereas d; denotes the number
of slots required.

The system mentioned above can be evaluated in an efficient way by the convolution algorithm
first introduced in (Iversen, 1987 [10]). We first describe the algorithm, and then explain it
in further detail by an example. The convolution algorithm is closely related to the product-
form.

10.4.1 The algorithm
The algorithm is described by the following three steps:

e Step 1: Calculate the state probabilities of each traffic stream as if it is alone in the
system, i.e. we consider classical loss systems as described in Chaps. 7 & 8. For traffic
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stream ¢ we find:

B ={pi(0), pi(1), ... ,pi(ni)}, i=12,....N. (10.20)

Only the relative values of p;(z) are of importance, so we may choose ¢;(0) = 1 and
calculate the values of ¢;(z) relative to ¢;(0). If a term ¢;(x) becomes greater than
K (e.g. 10'%), then we may divide all values ¢(j), 0 < j < x, by K. To avoid
any numerical problems in the following it is advisable to normalise the relative state
probabilities so that:

pi(j):%> J=0,1...,n;, Qi:ZQi(j)
7 j=0

As described in Sec. 7.4 we may normalise at each step to avoid any numerical problems.

Step 2: By successive convolutions (convolution operator x) we calculate the aggre-
gated state probabilities for the total system excepting traffic stream number ¢:

Onji=PixPyx-- %P1 * Py %% Py. (10.21)

We first convolve P, and P, and obtain P which is convolved with Ps, etc. Both the
commutative and the associative laws are valid for the convolution operator, defined in
the usual way (Sec. 3.2):

5*&: {pi(o) - p;(0), ZP( )-pi(1—x), - sz - p;( u—x)} (10.22)

=0
where
uw = min{n; + n;,n}. (10.23)

Notice, that we truncate the state space at state n. Even if P, and P; are normalised,
then the result of a convolution is in general not normalised “due to the truncation. It
is recommended to normalise after every convolution to avoid any numerical problems
both during this step and the following.

Step 3: Calculate the time congestion £, the call congestion B;, and the traffic con-
gestion C; of stream ¢. This is done during the convolution:

Qn = Qnyix P

This convolution results in:
J
0= Qi — ) pilz) =D pL(j)., (10.24)
x=0

where for p’(j), 7 denotes the traffic stream, j the total number of busy channels, and
x the number of channels occupied by stream number 7. Steps 2 — 3 are repeated for
every traffic stream. In the following we derive formulee for E;, B;, and C.
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Time congestion E; for traffic stream ¢ becomes:

B =Y p()/Q. (10.25)

where
Spi={(=,j) [z <j<nA(e>n—d)V(j>n—d)},

The summation is extended to all states Sg: where calls belonging to class ¢ are blocked: the
set {x > n; — d;} corresponds to the states where traffic stream 7 has utilised its quota, and
(j > n —d;) corresponds to states with less than d; idle channels. @ is the normalisation
constant:

Q=>_Qn(j).
§=0
(At this stage we usually have normalised the state probabilities so that @ = 1).

Call congestion B; for traffic stream i is the ratio between the number of blocked call attempts
and the total number of call attempts, both for traffic stream 7, and for example per time

unit. We find: S @) p()
i) - pi
B =—— SEZJ. S— (10.26)
Zj;o =0 Az(x) 'pfr(.]>

Traffic congestion C;: We define as usual the offered traffic as the traffic carried by an infinite
trunk group. The carried traffic for traffic stream ¢ is:

V=33 i), (10.27)

7=0 =0

Thus we find:

The algorithm is implemented in the PC-tool ATMOS (Listov—Saabye & Iversen, 1989 [71]).
The storage requirement is proportional to n as we may calculate the state probabilities of
a traffic stream when it is needed. In practice we use a storage proportional with n - N,
because we save intermediate results of the convolutions for later re-use. It can be shown
(Iversen & Stepanov, 1997 [12]) that we need (4 - N —6) convolutions when we calculate
traffic characteristics for all N traffic streams. Thus the calculation time is linear in N and
quadratic in n.

Example 10.4.1: De-convolution
In principle we may obtain Q/; from @y by a de-convolution and then during the re-convolution of

P; calculate the performance measures. In this way we need not repeat all the convolutions (10.21)
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Stream 3: Pascal traffic (Negative Binomial)

S3 = —2 sources

73 = —1/3 calls/time unit

ps =1 (time unit™)

B3 = 7v3/1s = —1/3 erlang per idle source
Zs=1/(1+p3) =3/2

d; =1 channels/call

A3 = S3- (1 —Z3) =1 erlang

ns =4 (max. # of simultaneous calls)

Table 10.2: A Pascal traffic stream (Example 8.7.2) is offered to the same trunk as the two
traffic streams of Tab. 10.1.

for each traffic stream. However, when implementing this approach we get numerical problems. The
convolution is from a numerical point of view very stable, and therefore the de-convolution will be
unstable. Nevertheless, we may apply de-convolution in some cases, for instance when the traffic
sources are on/off-sources. O

Example 10.4.2: Three traffic streams

We first illustrate the algorithm with a small example, where we go through the calculations in
every detail. We consider a system with 6 channels and 3 traffic streams. In addition to the two
streams in Example 10.3.2 we add a Pascal stream with class limitation as shown in Tab. 10.2 (cf.
Example 8.7.2). We want to calculate the performance measures of traffic stream 3.

e Step 1: We calculate the state probabilities p;(j) of each traffic stream i (1 = 1,2,3, j =
1,2,...,n;) as if it were alone. The results are given in Tab. 10.3.

e Step 2: We evaluate the convolution of p;(j) with pa(k), p1 * p2, truncate the state space at
n = 6, and normalise the probabilities so that we obtain pis shown in the Tab. 10.3. Notice
that this is the result obtained in Example 10.3.2.

e Step 3: We convolve p12(j) with ps(k), truncate at n, and obtain gi23(j) as shown in Tab. 10.3.

The time congestion F3 is obtained from the detailed state probabilities. Traffic stream 3 (single—
slot traffic) experiences time congestion, both when all six channels are busy and when the traffic
stream occupies 4 channels (maximum allocation). From the detailed state probabilities we get:

q123(6) + p3(4) - {p12(0) + p12(1)}

E. =
3 0.8678

0.1535 4 0.0279 - {0.0496 + 0.0992}
0.8678 ’

Es = 0.1817.
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State | Probabilities | g12(7) | Normal. | Prob. | g125(j) | Normal.

J p1(J) | p2J) | pr*p2 | pi2(y) | p3(J) | prz*ps | pr2s())

0.1360 | 0.3176 | 0.0432 | 0.0496 | 0.4525 | 0.0224 | 0.0259
0.2719 | 0.0000 | 0.0864 | 0.0992 | 0.3017 | 0.0599 | 0.0689
0.2719 | 0.4235 | 0.1440 | 0.1653 | 0.1508 | 0.1122 | 0.1293
0.1813 | 0.0000 | 0.1727 | 0.1983 | 0.0670 | 0.1579 | 0.1819
0.0906 | 0.2118 | 0.1727 | 0.1983 | 0.0279 | 0.1825 | 0.2104
0.0363 | 0.0000 | 0.1459 | 0.1675 | 0.0000 | 0.1794 | 0.2067
6 0.0121 | 0.0471 | 0.1062 | 0.1219 | 0.0000 | 0.1535 | 0.1769

Total | 1.0000 | 1.0000 | 0.8711 | 1.0000 | 1.0000 | 0.8678 | 1.0000

Ol i W N — O

Table 10.3: Convolution algorithm applied to Example 10.4.2. The state probabilities for the
individual traffic streams have been calculated in the examples 7.5.1, 8.5.1 and 8.7.2.

Notice that the state {p3(4)-p12(2)} is included in state q123(6). The carried traffic for traffic stream
3 is obtained during the convolution of p3(i) and pi2(j) and becomes:

4

6—1
= 0.81678{22'-1?3<i>j2‘6m(j>},

i=1

0.6174
3 0s67s TS

As the offered traffic is A3 = 1, we get:

Traffic congestion:

1—-0.7115
Cy = ——2,
1
Cs = 0.2885.
The call congestion becomes:

Ty

B3 =
Ty

where zy is the number of lost calls per time unit, and z; is the total number of call attempts per
time unit. Using the normalised probabilities from Tab. 10.3 we get {A3(i) = (S3—1) vy3}:

ze = A3(0) - {ps(0) - p12(6)}
+A3(1) - {ps(1) - p12(5)}
+A3(2) - {p3(2) - pr2(4)}
+A3(3) - {ps(3) - p12(3)}

+ A3(4) - p3(4) - {p12(2) + p12(1) + p12(0)} ,
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zy = 0.2503.

6
v = A3(0)-p3(0) - > pia(h)
=0
5
+23(1) - p3(1) - D pi2(d)
=0

4
+23(2) - ps(2) - Y p12(h)
=0

3

+23(3) - p3(3) - D pia(d)

j=0

2
+X3(4) - p3(4) - D pia(s)
=0

¢y = 1.1763.

We thus get:

Zy

By = ~£ =0.2128.

Tt
In a similar way by interchanging the order of convolving traffic streams we find the performance
measures of stream 1 and 2. The total number of micro-states in this example is 47. By the
convolution method we reduce the number of states so that we never need more than two vectors
of each n+1 states, i.e. 14 states.

By using the ATMOS-tool we get the following results shown in Tab. 10.4 and Tab. 10.5. The total
congestion can be split up into congestion due to class limitation (n;), and congestion due to the

limited number of channels (n). O
Input Total number of channels n = 6
Offered | Peaked | Maximum | Slot | Mean hold- | Sources | beta
traffic ness allocation | size | ding time
i A; Z; n; d; py S; Bi
1 2.0000 1.00 6 1 1.00 00 0
2 1.0000 0.75 6 2 1.00 4 0.3333
3 1.0000 1.50 4 1 1.00 -2 -0.3333

Table 10.4: Input data to ATMOS for Example 10.4.2 with three traffic streams.
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Output | Call congestion | Traffic congestion | Time congestion | Carried traffic

1 1.769 200E-01 1.769 200E-01 1.769 200E-01 1.646 160
2 3.346 853E-01 2.739 344E-01 3.836 316 E-01 1.452131
3 2.127 890E-01 2.884 898E-01 1.817079E-01 0.711510

Total 2.380397E-01 3.809801

Table 10.5: Output data from ATMOS for the input data in Tab. 10.4.

Example 10.4.3: Large-scale example

To illustrate the tool “ATMOS” we consider in Tab. 10.6 and Tab. 10.7 an example with 1536 trunks
and 24 traffic streams. We notice that the time congestion is independent of peakedness Z; and
proportional to the slot-size d;, because we often have:

p()~p(i—1)=~...~p(j—d;) for d;<kj. (10.28)

This is obvious as the time congestion only depends on the global state probabilities. The call
congestion is almost equal to the time congestion. It depends weakly upon the slot-size. This is
also to be expected, as the call congestion is equal to the time congestion with one source removed
(arrival theorem). In the table with output data we have in the rightmost column shown the
relative traffic congestion divided by (d; - Z;), using the single-slot Poisson traffic as reference value
(d; = Z; = 1). We notice that the traffic congestion is proportional to d; - Z;, which is the usual
assumption when using the Equivalent Random Traffic (ERT) method (Chap. 9). The mean value
of the offered traffic increases linearly with the slot-size, whereas the variance increases with the
square of the slot-size. The peakedness (variance/mean) ratio for multi-slot traffic thus increases
linearly with the slot-size. We thus notice that the traffic congestion is much more relevant than
the time congestion and call congestion for characterising the performance of the system. If we
calculate the total traffic congestion using Fredericks & Hayward’s method (Sec. 9.2), then we get
a total traffic congestion equal to 6.114 % (cf. Example 9.3.2 and Tab. 10.7). The exact value is
5.950 %. O

10.5 State space based algorithms

The convolution algorithm is based on aggregation of traffic streams, where we end up with
a traffic stream which is the aggregation of all traffic streams except the one which we are
interested in. Another approach is to aggregate the state space into global state probabilities.
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Input Total # of channels n = 1536
Offered traf. | Peakedness | Max. sim. # | Channels/call | mht Sources

{ A; Z; n; d; i S B

1 64.000 0.200 1536 1 1.000 || 80.000 | 4.000
2 64.000 0.500 1536 1 1.000 || 128.000 | 1.000
3 64.000 1.000 1536 1 1.000 00 0.000
4 64.000 2.000 1536 1 1.000 || -64.000 | -0.500
5 64.000 4.000 1536 1 1.000 || -21.333 | -0.750
6 64.000 8.000 1536 1 1.000 || -9.143 | -0.875
7 32.000 0.200 1536 2 1.000 || 40.000 | 4.000
8 32.000 0.500 1536 2 1.000 || 64.000 | 1.000
9 32.000 1.000 1536 2 1.000 00 0.000
10 32.000 2.000 1536 2 1.000 || -32.000 | -0.500
11 32.000 4.000 1536 2 1.000 || -10.667 | -0.750
12 32.000 8.000 1536 2 1.000 || -4.571 | -0.875
13 16.000 0.200 1536 4 1.000 || 20.000 | 4.000
14 16.000 0.500 1536 4 1.000 || 32.000 | 1.000
15 16.000 1.000 1536 4 1.000 00 0.000
16 16.000 2.000 1536 4 1.000 || -16.000 | -0.500
17 16.000 4.000 1536 4 1.000 || -5.333 | -0.750
18 16.000 8.000 1536 4 1.000 || -2.286 | -0.875
19 8.000 0.200 1536 8 1.000 || 10.000 | 4.000
20 8.000 0.500 1536 8 1.000 || 16.000 | 1.000
21 8.000 1.000 1536 8 1.000 00 0.000
22 8.000 2.000 1536 8 1.000 || -8.000 | -0.500
23 8.000 4.000 1536 8 1.000 || -2.667 | -0.750
24 8.000 8.000 1536 8 1.000 || -1.143 | -0.875

Table 10.6: Input data for Example 10.4.3 with 24 traffic streams and 1536 channels. The maximum
number of simultaneous calls of type i (n;) is in this example n = 1536 (full accessibility), and mht
is an abbreviation for mean holding time.
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Output | Call congestion | Traffic congestion | Time congestion | Carried traffic | Rel. value
1 6.187 744E-03 1.243 705E-03 6.227 392E-03 63.920403 0.9986
2 6.202 616E-03 3.110956E-03 6.227 392E-03 63.800 899 0.9991
3 6.227 392E-03 6.227 392E-03 6.227 392E-03 63.601 447 1.0000
4 6.276 886E-03 1.247 546 E-02 6.227 392E-03 63.201 570 1.0017
5 6.375517E-03 2.502 346E-02 6.227 392E-03 62.398 499 1.0046
6 6.570 378E-03 5.025 181E-02 6.227 392E-03 60.783 884 1.0087
7 1.230 795E-02 2.486 068E-03 1.246 554E-02 63.840 892 0.9980
8 1.236 708E-02 6.222 014E-03 1.246 554E-02 63.601 791 0.9991
9 1.246 554E-02 1.246 554E-02 1.246 554E-02 63.202 205 1.0009
10 1.266 184E-02 2.500 705E-02 1.246 554E-02 62.399 549 1.0039
11 1.305 003E-02 5.023 347E-02 1.246 554E-02 60.785 058 1.0083
12 1.379 446 E-02 1.006 379E-01 1.246 554E-02 57.559 172 1.0100
13 2.434 998E-02 4.966 747E-03 2.497245E-02 63.682128 0.9970
14 2.458 374E-02 1.244 484E-02 2.497 245E-02 63.203 530 0.9992
15 2.497 245E-02 2.497 245E-02 2.497 245E-02 62.401 763 1.0025
16 2.574 255E-02 5.019301E-02 2.497 245E-02 60.787 647 1.0075
17 2.722 449E-02 1.006 755E-01 2.497 245E-02 57.556 771 1.0104
18 2.980 277E-02 1.972 682E-01 2.497 245E-02 51.374 835 0.9899
19 4.766 901E-02 9.911 790E-03 5.009 699E-02 63.365 645 0.9948
20 4.858 283E-02 2.489 618E-02 5.009 699E-02 62.406 645 0.9995
21 5.009 699E-02 5.009 699E-02 5.009 699E-02 60.793 792 1.0056
22 5.303 142E-02 1.007 214E-01 5.009 699E-02 57.553 828 1.0109
23 5.818 489E-02 1.981 513E-01 5.009 699E-02 51.318 316 0.9942
24 6.525 455E-02 3.583491E-01 5.009 699E-02 41.065 660 0.8991
Total 5.950 135E-02 1444.605

Table 10.7: Output for Example 10.4.3 with input data given in Tab. 10.6. As mentioned earlier
in Example 9.3.2, Fredericks-Hayward’s method results in a total congestion equal to 6.114 %. The
total traffic congestion 5.950 % is obtained from the total carried traffic and the offered traffic.
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10.5.1 Fortet & Grandjean (Kaufman & Robert) algorithm

In case of Poisson arrival processes the algorithm becomes very simple by generalizing (10.10).
Let p;(z) denote the contribution of stream i to the global state probability p(x):

plx) =) pilx). (10.29)

Thus the average number of channels occupied by stream ¢ when the system is in global state
x is x p;(x). Let traffic stream i have the slot-size d;. Due to reversibility we will have local
balance for every traffic type. The local balance equation becomes:

xﬁ@%M:Aer_@% v=d;,d;+1,...n. (10.30)

The left-hand side is the flow from state [z ] to state [x — d;]| due to departures of type i
calls. The right-hand side is the flow from global state [x — d; | to state [ x| due to arrivals of

type 7. It does not matter whether x is a integer multiple of d;, as we only consider average
values. From (10.30) we get:

pi(z) = %di Ai-plr —di). (10.31)

The total state probability p(x) is obtained by summing over all traffic streams (10.29):

N
1
A A _0 ¢ 0. 10.32
p(x) x%; plx—d;), plz) or < (10.32)

This is Fortet & Grandjean’s algorithm (Fortet & Grandjean, 1964 [28]) The algorithm is
usually called Kaufman & Roberts’ algorithm, as it was re-discovered by these authors in
1981 (Kaufman, 1981 [58]) (Roberts, 1981 [23]).

10.5.2 Generalized algorithm

The above model can easily be generalized to BPP-traffic (Iversen, 2005 [11])

xpi(x T —d;
dé )'Ni:p(w_di)'si%_pi(x_di)' 4 Y-

(10.33)

On the right-hand side the first term assumes that all type i sources are idle during one time
unit. As we know

i

'Pz‘(x - dz‘)
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type 7 sources on the average are busy in global state x—d; we reduce the first term with the
second term to get the right value. Thus we get:

(0 z<0
p(0) r=0
p(z) = N (10.34)
sz(l‘) r=12....n
[ =1
dz Sz’Yz T dz i
h (z) = & plz—dy) — (e —ds 10.
where  p;(z) " p(z —di) = — m pi(z — d;) (10.35)
pi(z) = 0 x <d; (10.36)

The state probability p(0) is obtained by the normalization condition:

POEDIPICIESE (10.37)

j=0 i=1

Above we have used the parameters (S;, 3;) to characterize the traffic streams. Alternatively
we may also use (4;, Z;) related to (S;, ;) by the formulae (8.20) — (8.23). Then (10.35)
becomes:

“ e d)

_ : o — ds 10.
Z " Z pi(z — d;) (10.38)

pi(r) =
For Poisson arrivals we of course get (10.32). In practical evaluation of the formula we will
use normalization in each step as described in Sec. 7.4.1. This results in a very accurate and
effective algorithm. In this way also the number of operations and the memory requirements
become very small, as we only need to store the d; previous state probabilities of traffic
stream ¢, and the max{d;} previous values of the global state probabilities. The number of
operations is linear in number of channels.

Performance measures

By this algorithm we are able to obtain performance measures for each individual traffic
stream.

Time congestion:
Call attempts of stream ¢ require d; idle channel and will be blocked with probability:

E;= Y pli). (10.39)
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Traffic congestion:
From the state probabilities p;(x) we get the total carried traffic of stream i:

Y, = Z zpi(x). (10.40)

Thus the traffic congestion of stream 7 becomes:

Ai-d; = Y;
C;=——". 10.41
o (10.41)
The total carried traffic is
N
Y =)V, (10.42)
j=1
so the total traffic congestion becomes:
A=Y
C=— 10.43
— (10.43)
where A is the total offered traffic measured in channels:
N
j=1
Call congestion:
This is obtained from the traffic congestion by using (8.47):
(1+p)C;
Bi=—-—"——. 10.44
14 3;,C; ( )

The total call congestion cannot be obtained by this formula as we do not have a global value
of 3. But from individual carried traffic and call congestion we may find the total number of
offered calls and accepted calls for each stream and from this the total call congestion.

Example 10.5.1: Generalized algorithm

We evaluate Example 10.3.2 by the general algorithm. Table 10.8 shows the non-normalized state
probabilities when we let state zero equal to one. Table 10.9 shows the normalized state probabilities
and the carried traffic of each stream in each state. In a computer program we would normalize state
probabilities after each iteration (increasing number of lines by one) and calculate the aggregated
total traffic for each stream. This traffic value should of course also be normalized in each step. In
this way we only need to store the previous d; values and the carried traffic of each traffic stream.
We get the following performance measures, which of course are the same as obtained by convolution
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State | Poisson Engset Total
z ¢1(x) g2(7) q()
0 0 0 1
1 %1: 0 2
2 | ge2-2 | pdr-o-g | ¥
3| 3%-3 | do-0-k | 4
G| -2 | 3apozgdoz) 4
s | 3=t |34a-ppp-on) o
6 |2monlzag oo
Total 2728

Table 10.8: Example 10.5.1: relative state probabilities for Example 10.3.2 evaluated by the
generalized algorithm.

State Poisson Engset Total
| piz) |z-pi(x) | palx) |-po(x) | plr) |y=x-p(z)

0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0496 0.0000
0.0992 | 0.0992 | 0.0000 | 0.0000 | 0.0992 0.0992
0.0992 | 0.1983 | 0.0661 | 0.1322 | 0.1653 0.3305
0.1102 | 0.3305 | 0.0881 | 0.2644 | 0.1983 0.5949
0.0992 | 0.3966 | 0.0992 | 0.3966 | 0.1983 0.7932
0.0793 | 0.3966 | 0.0881 | 0.4407 | 0.1675 0.8373
6 0.0558 | 0.3349 | 0.0661 | 0.3966 | 0.1219 0.7315

Total 1.7562 1.6306 | 1.0000 3.3867

Ol = W N = O

Table 10.9: Example 10.5.1: absolute state probabilities and carried traffic y;(x) = x - p;(z)
for Example 10.3.2 evaluated by the generalized algorithm.
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algorithm.
E; =p(6) =0.1219
Ey =p(5)+p6) =0.2894
Cp =P =0.1219
Cy = 12=L0306 = 0.1847
_ (1+0)-0.1219 _

_ (141/3):0.1847
By ~ 1+(1/3)-0.1847 = 0.2320

10.6 Final remarks

The convolution algorithm for loss systems was first published in (Iversen, 1987 [10]). A
similar approach to a less general model was published in two papers by Ross & Tsang
(1990 [90]), (1990 [91]) without reference to this original paper from 1987 even though it was
known by the authors.

The generalized algorithm in Sec. 10.5.2 is new and includes Delbrouck’s algorithm (Del-
brouck, 1983 [22]) which is more complex to evaluate. Compared with all other algorithms
the generalized algorithm requires much less memory and operations to evaluate. By normal-
izing the state probabilities in each iteration we get a very accurate and simple algorithm. In
principle, we may apply the generalized algorithm for BPP—traffic to calculate the global state
probabilities for (N —1) traffic streams and then use the convolution algorithm to calculate
the performance measures for the remaining traffic stream we want to evaluate.

The convolution algorithm is more general than the generalized algorithm as it allows for
minimum and maximum allocation of channels to each traffic stream. The generalized algo-
rithm does not keep account of the actual number of calls for each stream. The convolution
algorithm furthermore allows for arbitrary state-dependent arrival processes.

Updated 2006-02-20



Chapter 11

Dimensioning of telecom networks

Network planning includes designing, optimising, and operating telecommunication networks.
In this chapter we will consider traffic engineering aspects of network planning. In Sec. 11.1
we introduce traffic matrices and the fundamental double factor method (Kruithof’s method)
for updating traffic matrices according to forecasts. The traffic matrix contains the basic
information for choosing the topology (Sec. 11.2) and traffic routing (Sec. 11.3).

In Sec. 11.4 we consider approximate calculation of end-to-end blocking probabilities, and
describe the Erlang fix-point method (reduced load method). Sec. 11.5 generalises the con-
volution algorithm introduced in Chap. 10 to networks with exact calculation of end-to-end
blocking in virtual circuit switched networks with direct routing. The model allows for multi-
slot BPP traffic with minimum and maximum allocation. The same model can be applied to
hierarchical cellular wireless networks with overlapping cells and to optical WDM networks.
In Sec. 11.6 we consider service-protection mechanisms. Finally, in Sec. 11.7 we consider
optimising of telecommunication networks by applying Moe’s principle.

11.1 Traffic matrices

To specify the traffic demand in an area with K exchanges we should know K? traffic values
Aii(i,7 =1,...,K), as given in the traffic matrix shown in Tab. 11.1. The traffic matrix
assumes we know the location areas of exchanges. Knowing the traffic matrix we have the
following two interdependent tasks:

e Decide on the topology of the network (which exchanges should be interconnected 7)

e Decide on the traffic routing (how do we exploit a given topology ?)
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TO
K
FROM 1 oo e j e K A=) A
k=1
1 Ay - Ay o Ay A Ay
7 Azl Au Aij AzK Az
J Aj Aji Ajj Ajx Aj.
K Ax1 Afi Ak Axr Ax
K K K
A= A | Ay - Ag e Ay A | DAL= A,
k=1 i=1 Jj=1
The traffic matrix has the following elements:
A;; = is the traffic from ¢ to j.
A;; = 1is the internal traffic in exchange 1.
. = is the total outgoing (originating) traffic from 1.
A, = is the total incoming (terminating) traffic to j.

Table 11.1: A traffic matrix. The total incoming traffic is equal to the total outgoing traffic.

11.1.1 Kruithof’s double factor method

Let us assume we know the actual traffic matrix and that we have a forecast for future
row sums O(i) and column sums 7'(i), i.e. the total incoming and outgoing traffic for each
exchange. This traffic prognosis may be obtained from subscriber forecasts for the individual
exchanges. By means of Kruithof’s double factor method (Kruithof, 1937 [69]) we are able
to estimate the future individual values A;; of the traffic matrix. The procedure is to adjust
the individual values A;;, so that they agree with the new row/column sums:

S

So’
where Sy is the actual sum and S; is the new sum of the row/column considered. If we start
by adjusting A;; with respect to the new row sum .S;, then the row sums will agree, but the
column sums will not agree with the wanted values. Therefore, next step is to adjust the

obtained values A;; with respect to the column sums so that these agree, but this implies that
the row sums no longer agree. By alternatively adjusting row and column sums the values
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obtained will after a few iterations converge towards unique values. The procedure is best
illustrated by an example given below.

Example 11.1.1: Application of Kruithof’s double factor method
We consider a telecommunication network having two exchanges. The present traffic matrix is given

as:

1 2 Total

1 10 20 30

2 30 40 70
Total 40 60 100

The prognosis for the total originating and terminating traffic for each exchange is:

1 2 Total

1 45

2 105
Total 50 100 150

The task is then to estimate the individual values of the matrix by means of the double factor

method.

Iteration 1: Adjust the row sums. We multiply the first row by (45/30) and the second row by

(105/70) and get:

1 2 Total
1 15 30 45
2 45 60 105
Total 60 90 150
The row sums are now correct, but the column sums are not.
Iteration 2: Adjust the column sums:
1 2 Total
1 12.50 33.33 45.83
2 37.50 66.67 104.17
Total 50.00 100.00 150.00
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We now have the correct column sums, whereas the column sums deviate a little. We continue by
alternately adjusting the row and column sums:

Iteration 3:

1 2 Total
1 12.27 32.73 45.00
2 37.80 67.20 105.00
Total 50.07 99.93 150.00
Iteration 4:
1 2 Total
1 12.25 32.75 45.00
2 37.75 67.25 105.00
Total 50.00 100.00 150.00
After four iterations both the row and the column sums agree with two decimals. O

There are other methods for estimating the future individual traffic values A;;, but Kruithof’s
double factor method has some important properties (Bear, 1988 [5]):

e Uniqueness. Only one solution exists for a given forecasts.

e Reversibility. The resulting matrix can be reversed to the initial matrix with the same
procedure.

e Transitivity. The resulting matrix is the same independent of whether it is obtained
in one step or via a series of intermediate transformations, (for instance one 5-year
forecast, or five 1-year forecasts).

e [nvariance as regards the numbering of exchanges. We may change the numbering of
the exchanges without influencing the results.

e Fractioning. The single exchanges can be split into sub-exchanges or be aggregated into
larger exchanges without influencing the result. This property is nor exactly fulfilled
for Kruithof’s double factor method, but the deviations are small.
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11.2 Topologies

In Chap. 1 we have described the basic topologies as star net, mesh net, ring net, hierarchical
net and non-hierarchical net.

11.3 Routing principles

This is an extensive subject including i.a. alternative traffic routing, load balancing, etc. In
(Ash, 1998 [3]) there is a detailed description of this subject.

11.4 Approximate end-to-end calculations methods

If we assume the links of a network are independent, then it is easy to calculate the end-to-end
blocking probability. By means of the classical formuleae we calculate the blocking probability
of each link. If we denote the blocking probability of link 7 by E;, then we find the end-to-end
blocking probability for a call attempt on route j as follows:

Ej=1-]J0-E), (11.2)

where R is the set of links included in the route of the call. This value will be worst case,
because the traffic is smoothed by the blocking on each link, and therefore experience less
congestion on the last link of a route.

For small blocking probabilities we have:

Ej~> E;. (11.3)

1I€ER

11.4.1 Fix-point method

A call will usually occupy channels on more links, and in general the traffic on the individual
links of a network will be correlated. The blocking probability experienced by a call attempt
on the individual links will therefore also be correlated. Erlang’s fix-point method is an
attempt to take this into account.



216 CHAPTER 11. DIMENSIONING OF TELECOM NETWORKS

11.5 Exact end-to-end calculation methods

Circuit switched telecommunication networks with direct routing have the same complexity
as queueing networks with more chains. (Sec. 14.9) and Tab. 14.3). It is necessary to keep
account of the number of busy channels on each link. Therefore, the maximum number of

states becomes:
K

H(ni +1). (11.4)

Route Number of
Link
1 2 .. N channels
1 dll d21 cet le n
2 dy2 dao e dne No
K dix dox te dnk Nk

Table 11.2: In a circuit switched telecommunication network with direct routing d,;; denoted
the slot-size (bandwidth demand) of route j upon link i (cf. Tab. 14.3).

11.5.1 Convolution algorithm

The convolution algorithm described in Chap. 10 can directly be applied to networks with
direct routing, because there is product form among the routes. The convolution becomes
multi-dimensional, the dimension being the number of links in the network. The truncation
of the state space becomes more complex, and the number of states increases very much.

11.6 Load control and service protection

In a telecommunication network with many users competing for the same resources (multiple
access) it is important to specify service demands of the users and ensure that the GoS is
fulfilled under normal service conditions. In most systems it can be ensured that preferen-
tial subscribers (police, medical services, etc.) get higher priority than ordinary subscribers
when they make call attempts. During normal traffic conditions we want to ensure that all
subscribers for all types of calls (local, domestic, international) have approximately the same
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service level, e.g. 1 % blocking. During overload situations the call attempts of some groups
of subscribers should not be completely blocked and other groups of subscribers at the same
time experience low blocking. We aim at “the collective misery”.

Historically, this has been fulfilled because of the decentralised structure and the application
of limited accessibility (grading), which from a service protection point of view still are
applicable and useful.

Digital systems and networks have an increased complexity and without preventive measures
the carried traffic as a function of the offered traffic will typically have a form similar to the
Aloha system (Fig. 6.4). To ensure that a system during overload continues to operate at
maximum capacity various strategies are introduced. In stored program controlled systems
(exchanges) we may introduce call-gapping and allocate priorities to the tasks (Chap. 13).
In telecommunication networks two strategies are common: trunk reservation and virtual
channels protection.

service protecting

route single choice route

last choice route

primary route = high usage route

Figure 11.1: Alternative traffic routing (cf. example 11.6.2). Traffic from A to B is partly
carried on the direct route (primary route = high usage route), partly on the secondary route
via the transit exchange T.

11.6.1 Trunk reservation

In hierarchical telecommunication networks with alternative routing we want to protect the
primary traffic against overflow traffic. If we consider part of a network (Fig. 11.1), then
the direct traffic AT will compete with the overflow traffic from AB for idle channels on the
trunk group AT. As the traffic AB already has a direct route, we want to give the traffic
AT priority to the channels on the link AT. This can be done by introducing trunk (channel)
reservation. We allow the AB-traffic to access the AT—channels only if there are more than r
channels idle on AT (r = reservations parameter). In this way, the traffic AT will get higher
priority to the AT—channels. If all calls have the same mean holding time (p; = po = p) and
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PCT-I traffic with single slot traffic, then we can easily set up a state transition diagram and
find the blocking probability.

If the individual traffic streams have different mean holding times, or if we consider Binomial
& Pascal traffic, then we have to set up an N-dimensional state transition diagram which will
be non-reversible. In some states calls of a type having been accepted earlier in lower states
may depart but not be accepted, and thus the process is non-reversible. We cannot apply
the convolution algorithm developed in Sec. 10.4 for this case, but the generalized algorithm
in Sec. 10.5.2 can easily be modified by letting p;(z) = 0 when z > n—r;.

An essential disadvantage by trunk reservation is that it is a local strategy, which only consider
one trunk group (link), not the total end-to-end connection. Furthermore, it is a one-way
mechanism which protect one traffic stream against the other, but not vice-versa. Therefore,
it cannot be applied to mutual protection of connections and services in broadband networks.

Example 11.6.1: Guard channels

In a wireless mobile communication system we may ensure lower blocking probability to hand-over
calls than experienced by new call attempts by reserving the last idle channel (called guard channel)
to hand-over calls. O

11.6.2 Virtual channel protection

In a service-integrated system it is necessary to protect all services mutually against each
other and to guarantee a certain grade-of-service. This can be obtained by (a) a certain min-
imum allocation of bandwidth which ensures a certain minimum service, and (b) a maximum
allocation which both allows for the advantages of statistical multiplexing and ensures that
a single service do not dominate. This strategy has the fundamental product form, and the
state probabilities are insensitive to the service time distribution. Also, the GoS is guaranteed
not only on a link basis, but end-to-end.

11.7 Moe’s principle

Theorem 11.1 Moe’s principle: the optimal resource allocation is obtained by a simulta-
neous balancing of marginal incomes and marginal costs over all sectors.

In this section we present the basic principles published by Moe in 1924. We consider a
system with some sectors which consume resources (equipment) for producing items (traffic).
The problem can be split into two parts:
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a. Given that a limited amount of resources are available, how should we distribute these
among the sectors?

b. How many resources should be allocated in total?

The principles are applicable in general for all kind of productions. In our case the resources
correspond to cables and switching equipment, and the production consists in carried traffic.

A sector may be a link to an exchange. The problem may be dimensioning of links between a
certain exchange and its neighbouring exchanges to which there are direct connections. The
problem then is:

a. How much traffic should be carried on each link, when a total fixed amount of traffic is
carried?

b. How much traffic should be carried in total?

Question a is solved in Sec. 11.7.1 and question b in Sec. 11.7.2. We carry through the
derivations for continuous variables because these are easier to work with. Similar derivations
can be carried through for discreet variables, corresponding to a number of channels. This is
Moe’s principle (Jensen, 1950 [50]).

11.7.1 Balancing marginal costs

Let us from a given exchange have direct connections to k£ other exchanges. The cost of a
connection to an exchange ¢ is assumed to to be a linear function of the number of channels:

Ci:COi+Ci'ni7 221,2,71{3 (115)

The total cost of cables then becomes:
k
C(nl,nQ,...,nk):CO+ZCi'ni, (11.6)
i=1

where Cj is a constant.

The total carried traffic is a function of the number of channels:
Y = f(ny,ng,...,ng) . (11.7)

As we always operate with limited resources we will have:

af
o, ~ Dif >0, (11.8)
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In a pure loss system D; f corresponds to the improvement function, which is always positive
for a finite number of channels because of the convexity of Erlang’s B—formula.

We want to minimise C' for a given total carried traffic Y:
min{C} given Y = f(ny,ne,...,ng) . (11.9)

By applying the Lagrange multiplier ¢, where we introduce G = C' — ¢ - f, this is equivalent
to:

min {G (n1,ng,...,ng)} = min {C (n1,ng, ..., ng) — 9 [f (n1,n9,...,nx) = Y]}  (11.10)

A necessary condition for the minimum solution is:

oG of .
anz—cz—’&anz—cz—ﬁ]:)zf—o, Z—1,2,...,]€, (1111)
o 1 D D D
L_ D _Dof  _Def (11.12)
9 c Co Cr,

A necessary condition for the optimal solution is thus that the marginal increase of the carried
traffic when increasing the number of channels (improvement function) divided by the cost
for a channel must be identical for all trunk groups (7.33).

It is possible by means of second order derivatives to set up a set of necessary conditions to
establish sufficient conditions, which is done in “Moe’s Principle” (Jensen, 1950 [50]). The
improvement functions we deal with will always fulfil these conditions.

If we also have different incomes g; for the individual trunk groups (directions), then we have
to include an additional weight factor, and in the results (11.12) we shall replace ¢; by ¢;/g;.

11.7.2 Optimum carried traffic

Let us consider the case where the carried traffic, which is a function of the number of channels
(11.7) is Y. If we denote the revenue with R(Y') and the costs with C(Y) (11.6), then the
profit becomes:

P(Y)=R(Y)-C(Y). (11.13)

A necessary condition for optimal profit is:

dP(Y) 0 _ drR _ dC
ay dy —dYy’

(11.14)

i.e. the marginal income should be equal to the marginal cost.
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Using:
k
P (ny,ng,...,nk) = R(f (n1,n2,...,n%)) — {CO + ch- . nl} , (11.15)
i=1

the optimal solution is obtained for:

oP dR
_ 8 Dif—e =0, 1.2, .k, 11.1
which by using (11.12) gives:
dR
— =1 11.1
v (11.17)

The factor ¥ given by (11.12) is the ratio between the cost of one channel and the traffic
which can be carried additionally if the link in extended by one channel. Thus we shall add
channels to the link until the marginal income equals the marginal cost ¢ (7.35).

Example 11.7.1: Optimal capacity allocation

We consider two links (trunk groups) where the offered traffic is 3 erlang, respectively 15 erlang.
The channels for the two systems have the same cost and there is a total of 25 channels available.
How should we distribute the 25 channels among the two links?

From (11.12) we notice that the improvement functions should have the same values for the two
directions. Therefore we proceed using a table:

Ay = 3 erlang | Ay = 15 erlang
ni | Fin(Ar) | n2 | Fiu(A2)

0.4201 17 0.4048
0.2882 18 0.3371
0.1737 | 19 0.2715
0.0909 | 20 0.2108
0.0412 | 21 0.1573

N O O = W

For ny = 5 and ny = 20 we use all 25 channels. This results in a congestion of 11.0%, respectively
4.6%, i.e. higher congestion for the smaller trunk group. O

Example 11.7.2: Triangle optimisation

This is a classical optimisation of a triangle network using alternative traffic routing (Fig. 11.1).
From A to B we have a traffic demand equal to A erlang. The traffic is partly carried on the direct
route (primary route) from A to B, partly on an alternative route (secondary route) A — T — B,
where T is a transit exchange. There are no other routing possibilities. The cost of a direct
connection is ¢g, and for a secondary connection c;.

How much traffic should be carried in each of the two directions? The route A — T — B already
carries traffic to and from other destinations, and we denote the marginal utilisation for a channel
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on this route by a. We assume it is independent of the additional traffic, which is blocked from
A — B.

According to (11.12), the minimum conditions become:

Fl,n(A) _ a

Cd Ct

Here, n is the number of channels in the primary route. This means that the costs should be the

same when we route an “additional” call via the direct route and via the alternative route.

If one route were cheaper than the other, then we would route more traffic in the cheaper direction.
O

As the traffic values applied as basis for dimensioning are obtained by traffic measurements
they are encumbered with unreliability due to a limited sample, limited measuring period,
measuring principle, etc. Asshown in Chap. 15 the unreliability is approximately proportional
to the measured traffic volume. By measuring the same time period for all links we get the
highest uncertainty for small links (trunk groups), which is partly compensated by the above-
mentioned overload sensitivity, which is smallest for small trunk groups. As a representative
value we typically choose the measured mean value plus the standard deviation multiplied
by a constant, e.g. 1.0.

To make sure, it should further be emphasised that we dimension the network for the traffic
which shall be carried 1-2 years from now. The value used for dimensioning is thus addi-
tionally encumbered by a forecast uncertainty. We has not included the fact that part of the
equipment may be out of operation because of technical errors.

ITU-T recommends that the traffic is measured during all busy hours of the year, and that
we choose n so that by using the mean value of the 30 largest, respectively the 5 largest
observations, we get the following blocking probabilities:

E, (Ay) < 0.01,

E, (45) < 0.07. (11.18)

The above service criteria can directly be applied to the individual trunk groups. In practise,
we aim at a blocking probability from A-subscriber to B-subscriber which is the same for all
types of calls. With stored program controlled exchanges the trend is a continuous supervision
of the traffic on all expensive and international routes.

In conclusion, we may say that the traffic value used for dimensioning is encumbered with
uncertainty. In large trunk groups the application of a non-representative traffic value may
result in serious consequences for the grade-of-service level. During later years, there has been
an increasing interest for adaptive traffic controlled routing (traffic network management),
which can be introduce in stored program control digital systems. By this technology we may
in principle choose the optimal strategy for traffic routing during any traffic scenario.



Chapter 12

Delay Systems

In this chapter we consider traffic to a system with n identical servers, full accessibility, and
an infinite number of waiting positions. When all n servers are busy, an arriving customer
joins a queue and waits until a server becomes idle. No customers can be in queue when a
server is idle (full accessibility).

We consider the same two traffic cases as in Chaps. 7 & 8.

1. Poisson arrival process (an infinite number of sources) and exponentially distributed
service times (PCT-I). This is the most important queueing system, called Erlang’s
delay system. Using the notation later introduced in Sec. 13.1, this system is denoted
as M/M/n. In this system the carried traffic will be equal to the offered traffic as
no customers are blocked. The probability of a positive waiting time, mean queue
lengths, mean waiting times, carried traffic per channel, and improvement functions
will be dealt with in Sec. 12.2. In Sec. 12.3 Moe’s principle is applied for optimising
the system. The waiting time distribution is calculated for the basic service discipline,
First-Come First-Served (FCFS), in Sec. 12.4.

2. A limited number of sources and exponentially distributed service times (PCT-II). This
is Palm’s machine repair model (the machine interference problem) which is dealt with
in Sec. 12.5. This model has been widely applied for dimensioning for example computer
systems, terminal systems, and flexible manufacturing system (FMS). Palm’s machine
repair model is optimised in Sec. 12.6.

12.1 Erlang’s delay system M/M/n

Let us consider a queueing system M/M/n with Poisson arrival process (M), exponential
service times (M), n servers and an infinite number of waiting positions. The state of the
system is defined as the total number of customers in the system (either being served or
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Figure 12.1: State transition diagram of the M/M/n delay system having n servers and an
unlimited number of waiting positions.

waiting in queue). We are interested in the steady state probabilities of the system. By the
procedure described in Sec. 7.4 we set up the state transition diagram shown in Fig. 12.1.
Assuming statistical equilibrium, the cut equations become:

A-p(0) = p-p(1),

A-p(l) = 2p-p(2),

A-pli) = (i+1) - plitl),

(12.1)
A-p(n=1) = npu-pn),
A-p(n) = np-p(n+l),
Apn+j) = np-pn+j+1).
As A = M/ is the offered traffic, we get:
A
1) = ' : A 12.2
e " - (122)
o — = _— 7 .
PO PO i ="

By normalisation of the state probabilities we obtain p(0) :
1= p(i),
i=0

Lopo)- fip A A A A A
=P 1 2! n! n n? ’
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The innermost brackets have a geometric progression with quotient A/n. The normalisation
condition can only be fulfilled for:
A<n. (12.3)

Statistical equilibrium is only obtained for A < n. Otherwise, the queue will continue to

increase against infinity.

We obtain: .

"21£+£ n
7! n' n—A

1=0

. A<n. (12.4)

p(0) =

Equations (12.2) and (12.4) yield the steady state probabilities.

12.2 Traffic characteristics of delay systems

For evaluation of the capacity and performance of the system, several characteristics have to
be considered. They are expressed by the steady state probabilities.

12.2.1 Erlang’s C-formula

When the Poisson arrival process is independent of the state of the system, the probability
that an arbitrary arriving customer has to wait in the queue is equal to the proportion of
time all servers are occupied (PASTA-property: Poisson Arrivals See Time Average). The
waiting time is a random variable denoted by W. For an arbitrary arriving customer we have:

Eyn(A) = p{Ww >0}

=0
n
= . . 12.
p(n) - —— (12.5)
Erlang’s C—formula:
ﬁ n
Ean(A) nin—A A<n. (12.6)
)T AQ Anfl An n ’
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This delay probability depends only upon A, the product of A and s, not upon the parameters
A and s individually. The formula has several names: Erlang’s C—formula, Erlang’s second
formula, or Erlang’s formula for waiting time systems. It has various notations in literature:

Esn(A) = D = Dy(A) = p{W > 0}.

As customers are either served immediately or put into queue, the probability that a customer
is served immediately becomes:

Spn=1—Ey,(A).

The carried traffic Y equals the offered traffic A, as no customers are rejected and the arrival
process is a Poisson process:

Y o= i)+ 3 el (12.7)
ST GRS L
A,
1

where we have exploited the cut balance equations.

The queue length is a random variable £. The probability of having customers in queue at a
random point of time is:

A
p{L>0} = > p(i)=—" pn),
i=n+1 1——
plE>0) = ) =2 5, (4. (12.8)

where we have used (12.5).

12.2.2 Numerical evaluation

The formula is similar to Erlang’s B-formula (7.10) except for the factor n/(n — A) in the
last term. As we have very accurate recursive formulae for numerical evaluation of Erlang’s
B-formula (7.29) we use the following relationship for obtaining numerical values of the C-
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formula:

n- Ey,(A)
n—A(l— E;,(A))

o El,n(A)
S T A B A<n. (12.9)

We notice that:
Esn(A) > Ey,(A),
as the term A{1 — E; ,(A)} /n is the average carried traffic per channel in the corresponding

loss system. For A > n, we have E,,(A) = 1 as it is a probability and all customers are
delayed.

Erlang’s C-formula may in an elegant way be expressed by the B-formula as noticed by
B. Sanders:

: - : 1 12.10
Eyn(A) — Eiu(A)  Erpi(A)’ (12.10)
Ln(A) = Li(A) = I ,_1(A), (12.11)

where I is the inverse probability (7.30):

1
 Ey,(A)

]2,n(A)

Erlang’s C-formula has been tabulated in Moe’s Principle (Jensen, 1950 [50]) and is shown
in Fig. 12.2.

12.2.3 Mean queue lengths

We distinguish between the queue length at an arbitrary point of time and the queue length
when there are customers waiting in the queue.

Mean queue length at an arbitrary point of time:

The queue length £ at an arbitrary point of time is called the virtual queue length. This is
the queue length experienced by an arbitrary customer as the PASTA-property is valid due
to the Poisson arrival process (time average = call average). We get the mean queue length
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Figure 12.2: Erlang’s C—formula for the delay system M/M/n. The probability Es ,(A) for a
positive waiting time is shown as a function of the offered traffic A for different values of the

number of servers n.

L, = E{L} at an arbitrary point of time:

o0

Ly = 0-3 p(@)+ 3 (i=n)p(3)

i=n+1

- Yo ()

= 3 (3) ]

As A/n < ¢ < 1, the series is uniformly convergent, and the differentiation operator may be
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put outside the summation:

o A 9 A/n — o(n A—/n
L, = p( )n d(A/n) {1—(A/n)} (n) {1—(A/n)}2

(n) n A
pAn n—A n—A"

A

Ln = E27n(A) . n——A .

(12.12)

The average queue length may be interpreted as the traffic carried by the queueing positions
and therefore it is also called the waiting time traffic.

Mean queue length, given the queue is greater than zero:

The time average is also in this case equal to the call average. The conditional mean queue
length becomes:

= — (12.13)

By applying (12.8) and (12.12) this is of course the same as:

L
Ly = ——"
" p{L >0y

where £ is the random variable for queue length.

12.2.4 Mean waiting times

Here also two items are of interest: the mean waiting time W for all customers, and the
mean waiting time w for customers experiencing a positive waiting time. The first one is an
indicator for the service level of the whole system, whereas the second one is of importance
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for the customers, which are delayed. Time averages will be equal to call averages because of
the PASTA-property.

Mean waiting time W for all customers:

Little’s theorem tells that the average queue length is equal to the arrival intensity multiplied
by the mean waiting time:

Ly, = AW,. (12.14)
where L, = L,(A), and W,, = W,,(A). From (12.12) we get by considering the arrival process:
L 1 A
=2 . F, (A —— .
Wo=75 =5 Bald)- T3

As A = \s, where s is the mean service time, we get:

S

Wn :E27n<A) . n—A .

(12.15)

Mean waiting time w for delayed customers:

The total waiting time is constant and may either be averaged over all customers (W,,) or
only over customers, which experience positive waiting times (w,) (3.20):

W, = wy- Ean(A), (12.16)

s
= . 12.1
o n—A ( 7

Example 12.2.1: Single server queueing system M/M/1
This is the system appearing most often in the literature. The state probabilities (12.2) are given

by a geometric series: ‘
p(i)=(1—-A) A", i=0,12,..., (12.18)

as p(0) = 1—A. The probability of delay become:
Es1(A)=A.

The mean queue length L,, (12.12) and the mean waiting time for all customers W,, (12.15) become:

A2
As
= . 12.2
Wi —A (12.20)

From this we observe that an increase in the offered traffic results in an increase of L,, by the third
power, independent of whether the increase is due to an increased number of customers (\) or an
increased service time (s). The mean waiting time W), increases by the third power of s, but only by
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the second power of A. The mean waiting time w,, for delayed customers increases with the second
power of s, and the first power of X\. An increased load due to more customers is thus better than
an increased load due to longer service times. Therefore, it is important that the service times of a
system do not increase during overload. O

Example 12.2.2: Mean waiting time w when A — 0

Notice, that as A — 0, we get w, = s/n (12.17). If a customer experiences waiting time (which
seldom happens when A — 0), then this customer will be the only one in the queue. The customer
must wait until a server becomes idle. This happens after an exponentially distributed time interval
with mean value s/n. So w,, never becomes less than s/n. m

12.2.5 Improvement functions for M/M/n

The marginal improvement of the traffic carried when we add one server can be expressed
in several ways. The decrease in the proportion of total traffic (= the proportion of all
customers) that experience delay is given by:

FZ,n(A) = A{EQ,n(A) - E2,n+l<A)} ‘ (12'21)

The decrease in mean queue length (= traffic carried by the waiting positions) becomes by
using Little’s law (12.14):

Frn(A) = Ln(A) = Lysa(A)

= MWn(A) — Wy (A)} (12.22)

where W,,(A) is the mean waiting time for all customers when the offered traffic is A and the
number of servers is n (12.15). Both (12.21) and (12.22) are tabulated in Moe’s Principle
(Jensen, 1950 [50]) and are simple to evaluate by a calculator or computer.

12.3 Moe’s principle for delay systems

Moe first derived his principle for queueing systems. He studied the subscribers waiting times
for an operator at the manual exchanges in Copenhagen Telephone Company.

Let us consider k£ independent queueing systems. A customer being served at all k systems
has the total average waiting time ), W;, where W; is the mean waiting time of ’th system
which has n; servers and is offered the traffic A;. The cost of a channel is ¢;, eventually plus
a constant cost, which is included in the constant Cy below. Thus the total costs for channels
becomes:

k
C=Co+ Y mici. (12.23)
=1
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If the waiting time also is considered as a cost, then the total costs to be minimised becomes
f = f(n1,na,...,n). This is to be minimised as a function of number of channels n; in the
individual systems. If the total average waiting time is W, then the allocation of channels to
the individual systems is determined by:

min {f(ny,ng,...,ng)} = min{C’o—i—Zni ¢+ 0- (2:1/1/Z - W)} : (12.24)

where ¥ (theta) is Lagrange’s multiplier.

As n; is integral, a necessary condition for minimum, which in this case also can be shown to
a be sufficient condition, becomes:

0 < flny,ng,...,ni—1,...,ng) — f(ny,ng,...,n4 ... ng)

0 > f(ni,ne,...,ng...,ng) — f(ny,ne,...,n+1,... ng) (12.25)

which corresponds to:

SRS

Wi, (Ai) = Wi (4)

IA

(12.26)
where W,,.(A;) is given by (12.15).

Expressed by the improvement function for the waiting time Fy,,(A) (12.22) the optimal
solution becomes:

Fiym,1(A) > % > Fym(A),  i=1,2,...k. (12.27)

The function Fyy,,(A) is tabulated in Moe’s Principle (Jensen, 1950 [50]). Similar optimisa-
tions can be carried out for other improvement functions.

Example 12.3.1: Delay system

We consider two different M/M/n queueing systems. The first one has a mean service time of 100 s
and the offered traffic is 20 erlang. The cost-ratio ¢1 /¥ is equal to 0.01. The second system has a
mean service time equal to 10 s and the offered traffic is 2 erlang. The cost ration equals ¢y /¥ =
0.1. A table of the improvement function Fyy,,(A) gives:

ny = 32 channels and
no = 5 channels.
The mean waiting times are:
Wiy = 0.075s.

Wy = 0.199s.
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This shows that a customer, who is served at both systems, experience a total mean waiting time
equal to 0.274 s, and that the system with less channels contributes more to the mean waiting time.
Od

The cost of waiting is related to the cost ratio. By investing one monetary unit more in the
above system, we reduce the costs by the same amount independent of in which queueing
system we increase the investment. We should go on investing as long as we make profit.
Moe’s investigations during 1920’s showed that the mean waiting time for subscribers at
small exchanges with few operators should be larger than the mean waiting time at larger
exchanges with many operators.

12.4 Waiting time distribution for M/M/n, FCFS

Queueing systems, where the service discipline only depends upon the arrival times, all have
the same mean waiting times. In this case the strategy has only influence upon the dis-
tribution of waiting times for the individual customer. The derivation of the waiting time
distribution is simple in the case of ordered queue, FCEF'S = First—-Come First—Served. This
discipline is also called FIFO, First-In First-Out. Customers arriving first to the system will
be served first, but if there are multiple servers they may not necessarily leave the server first.
So FIFO refers to the time for leaving the queue and initiating service.

Let us consider an arbitrary customer. Upon arrival to the system, the customer is either
served immediately or has to wait in the queue (12.6).

We now assume that the customer considered has to wait in the queue, i.e. the system may
be in state [n+ k], (k =0,1,2,...), where k is the number of occupied waiting positions just
before the arrival of the customer.

Our customer has to wait until k£ + 1 customers have completed their service before an idle
server becomes accessible. When all n servers are working, the system completes customers
with a constant rate n u, i.e. the departure process is a Poisson process with this intensity.

We exploit the relationship between the number representation and the interval representation
(5.4): The probability p{W < t} = F(t) of experiencing a positive waiting time less than or
equal to ¢ is equal to the probability that in a Poisson arrival process with intensity (n u) at
least (k+1) customers arrive during the interval ¢ (6.1):

- '
F(t| k waiting) = E w et (12.28)
i
i=h+1

The above was based on the assumption that our customer has to wait in the queue. The
conditional probability that our customer when arriving observes all n servers busy and &
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waiting customers (k =0,1,2,---) is:

- (1-%) (%)k k=0,1,.... (12.29)

This is a geometric distribution including the zero class (Tab. 6.1). The unconditional waiting
time distribution then becomes:

F(t) = > pu(k)-F(t|k), (12.30)

as we may interchange the two summations when all terms are positive probabilities. The
inner summation is a geometric progression:

(-0 () - (-920)



12.4. WAITING TIME DISTRIBUTION FOR M/M/N, FCFS 235

Inserting this we obtain:

F(t) = e—nm‘i(ngt)i {1_ (%)z}

Som{Eer e ()

Fit) = 1—e (=2t o4 t>0. (12.31)

i.e. an exponential distribution. Apparently we have a paradox: when arriving at a system
with all servers busy one may:

1. Count the number k of waiting customers ahead. The total waiting time will then be
Erlang—(k+1) distributed.

2. Close the eyes. Then the waiting time becomes exponentially distributed.

The interpretation of this is that a weighted sum of Erlang distributions with geometrically
distributed weight factors is equivalent to an exponential distribution. In Fig. 12.3 the phase-
diagram for (12.30) is shown, and we notice immediately that it can be reduced to a single
exponential distribution (Sec. 4.4.2 & Fig. 4.9). Formula (12.31) confirms that the mean
waiting time w, for customers who have to wait in the queue becomes as shown in (12.17).
The waiting time distribution for all (an arbitrary customer) becomes (3.19):

Fit)=1— Eop(A) e~ =Aut 4 p 40, (12.32)

and the mean value of this distribution is W,, in agreement with (12.15). The results may be
derived in an easier way by means of generation functions.

12.4.1 Sojourn time for a single server

When there is only one server, the state probabilities (12.2) are given by a geometric series
p(i) = (1—A)- A" (12.18) for all i > 0. Every customer spends an exponentially distributed
time interval with intensity u in every state. A customer who finds the system in state [i]
shall stay in the system an Erlang—(i41) distributed time interval. Therefore, the sojourn
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Figure 12.3: The waiting time distribution for M/M/n-FCFS becomes exponentially dis-
tributed with intensity (nu—\). The phase-diagram to the left corresponds to a weighted
sum of Erlang-k distributions (Sec. 4.4.2) as the termination rate out of all phases is
np-(1—2)=np— A

time in the system (waiting time + service time), which also is called the response time, is
exponentially distributed with intensity (i — A) (cf. Fig. 4.9):

Fit)=1—e =Nt o) ¢>0. (12.33)

This is identical with the waiting time distribution of delayed customers. The mean sojourn
time may be obtained directly using W; from (12.20) and the mean service time s:

As
m = W1+5—1_A+s,
S 1
= = 12.34

where p1 = 1/s is the service rate. We notice that mean sojourn time is equal to mean waiting
time for delayed customers (12.17).

12.5 Palm’s machine repair model

This model belongs to the class of cyclic queueing systems and corresponds to a pure delay
system with a limited number of customers (cf. Engset case for loss systems).

The model was first considered by Gnedenko in 1933 and published in 1934. It became widely
known when C. Palm published a paper in 1947 [80] in connection with a theoretical analysis
of manpower allocation for servicing automatic machines. A number of S machines, which
usually run automatically, are serviced by n repairmen. The machines may break down and
then they have to be serviced by a repairman before running again. The problem is to adjust
the number of repairmen to the number of machines so that the total costs are minimised (or
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Figure 12.4: Density function for the waiting time distribution for the queueing discipline
FCFS, LCFS, and SIRO (RANDOM). For all three cases the mean waiting time for delayed
calls is 5 time-units. The form factor is 2 for FCFS, 3.33 for LCFS, and 10 for SIRO. The
number of servers is 10 and the offered traffic is 8 erlang. The mean service time is s = 10
time-units.

the profit optimised). The machines may be textile machines which stop when they run out
of thread; the repairmen then have to replace the empty spool of a machine with a full one.

This Machine-Repair model or Machine Interference model was also considered by Feller
(1950 [27]). The model corresponds to a simple closed queueing network and has been suc-
cessfully applied to solve traffic engineering problems in computer systems. By using Kendall’s
notation (Chap. 13) the queueing system is denoted by M /M /n/S/S, where S is the number
of customers, and n is the number of servers.

The model is widely applicable. In the Web the machines corrrespond to clients whereas
the repairmen correspond to servers. In computer terminal systems the machines correspond
to the terminals and a repairman corresponds to a computer managing the terminals. In a
computer system the machine may correspond to a disc storage and the repairmen correspond
to input/output (I/O) channels. In the following we will consider a computer terminal system
as the background for the development of the theory.
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12.5.1 Terminal systems

Time division is an aid in offering optimal service to a large group of customers using for
example terminals connected to a mainframe computer. The individual user should feel that
he is the only user of the computer (Fig. 12.5).

M0

|
n
Queue Computer
l
|

Terminals Queueing system

Figure 12.5: Palm’s machine-repair model. A computer system with S terminals (an inter-
active system) corresponds to a waiting time system with a limited number of sources (cf.
Engset-case for loss systems).

The individual terminal changes all the time between two states (interactive) (Fig. 12.6):

e the user is thinking (working), or

e the user is waiting for a response from the computer.

The time interval the user is thinking is a random variable T} with mean value m;. The time
interval, when the user is waiting for the response from the computer, is called the response
time R. This includes both the time interval T, (mean value m,,), where the job is waiting
for getting access to the computer, and the service time itself Ty (mean value my).

T: + R is called the circulation time (Fig. 12.6). At the end of this time interval the terminal
returns to the same state as it left at the beginning of the interval (recurrent event). In
the following we are mainly interested in mean values, and the derivations are valid for all
work-conserving queueing disciplines (Sec. 13.4.2).
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Figure 12.6: The individual terminal may be in three different states. FEither the user is
working actively at the terminal (thinking), or he is waiting for response from the computer.
The latter time interval (response time) is divided into two phases: a waiting phase and a
service phase.

12.5.2 State probabilities — single server

We consider now a system with S terminals, which are connected to one computer. The
thinking times for every thinking terminal are so far assumed to be exponentially distributed
with the intensity v = 1/my, and the service (execution) time at the computer is also as-
sumed to be exponentially distributed with intensity p = 1/m,. When there is queue at the
computer, the terminals have to wait for service. Terminals being served or waiting in queue
have arrival intensity zero.

State [7] is defined as the state, where there are ¢ terminals in the queueing system (Fig. 12.5),
i.e. the computer is either idle (i = 0) or working (¢ > 0), and (i—1) terminals are waiting
when (i > 0).

The queueing system can be modelled by a pure birth and death process, and the state
transition diagram is shown in Fig. 12.7. Statistical equilibrium always exists (ergodic sys-
tem). The arrival intensity decreases as the queue length increases and becomes zero when

all terminals are inside the queueing system.

The steady state probabilities are found by applying cut equations to Fig. 12.7 and expressing
all states in terms of state S:

(S—d)y-pli)=p-pli+1), i=0,1,...,5. (12.35)

By the additional normalization constraint that the sum of all probabilities must be equal to
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Figure 12.7: State transition diagram for the queueing system shown in 12.5. State [i]
denotes the number of terminals being either served or waiting, i.e. S — i denotes the number
of terminals thinking.

one we find, introducing o0 = u/7:

p(S—1i) = = p(9)

- i y-01,..8, (12.36)

S

p(0) = Eis(o) - (12.37)
This is the truncated Poisson distribution (7.9).

IR

We may interpret the system as follows. A trunk group with S trunks (the terminals) is offered
calls from the computer with the exponentially distributed inter-arrival times (intensity ).
When all S trunks are busy (thinking), the computer is idle and the arrival intensity is zero,
but we might just as well assume it still generates calls with intensity g which are lost or
overflow to another trunk group (the exponential distribution has no memory). The computer
thus offers the traffic o = p/v to S trunks, and we have the formula (12.37). Erlang’s B-
formula is valid for arbitrary holding times (Sec. 7.3.3) and therefore we have:

Theorem 12.1 The state probabilities of the machine repair model (12.36) & (12.37) with
one computer and S terminals is valid for arbitrary thinking times when the service times of
the computer are exponentially distributed.

The ratio ¢ = p/v between the time a terminal on average is thinking 1/ and the time
the computer on average serves a terminal 1/p, is called the service ratio. The service ratio
corresponds to the offered traffic A in Erlang’s B-formula. The state probabilities are thus
determined by the number of terminals S and the service ratio 9. The numerical evaluation
of (12.36) & (12.37) is of course as for Erlang’s B-formula (7.29).

Example 12.5.1: Information system
We consider an information system which is organised as follows. All information is kept on 6 discs
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which are connected to the same input/output data terminal, a multiplexer channel. The average
seek time (positioning of the seek-arm) is 3 ms and the average latency time to locate the file is 1
ms, corresponding to a rotation time of 2 ms. The reading time to a file is exponentially distributed
with a mean value 0.8 ms. The disc storage is based on rotational positioning sensing, so that the
channel is busy only during the reading. We want to find the maximum capacity of the system
(number of requests per second).

The thinking time is 4 ms and the service time is 0.8 ms. The service ratio thus becomes 5, and
Erlang’s B-formula gives the value:

1-p(0)=1-FE;6(5) =0.8082.
This corresponds to ymax = 0.8082/0.0008 = 1010 requests per second. a

12.5.3 Terminal states and traffic characteristics

The performance measures are easily obtained from the analogy with Erlang’s classical loss
system (12.37). Replacing p(0) by Ejs(g) the computer is working with the probability
{1 — E1s(0)}. We then have that the average number of terminals being served by the
computer is given by:

ns=1—E5(p0). (12.38)

The average number of thinking terminals corresponds to the traffic carried in Erlang’s loss
system:

me=" 1= Bus(o)} = o{l = Bus(0)} (12.39)
The average number of waiting terminals becomes:

ny = S—ns—n=8—-{1-Fis(0)} —o-{1-Eis(o)}

= S—{1-Eis(0) {1+ o} (12.40)
If we consider a random terminal at a random point of time, we get:

ns 1 - Eis(0)

terminal d} = ps=— , 12.41
p{terminal served} ps =g S ( )
1-F
p{terminal thinking} = p; = % = o Sl’s(g)) , (12.42)
1-F 1
p{terminal waiting} = p, = %U =1- { 15(5)}{ + o} : (12.43)

We are also interested in the response time R which has the mean value m, = m,, + m,. By
applying Little’s theorem L = AW to terminals, waiting positions and computer, respectively,
we obtain (denoting the circulation rate of jobs by \):

1 w S T
S M Ms T (12.44)
Aoy N N Ny + N
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or
T + Mg S —ny
my = ——— Mg = “My .
nS nS

Making use of (12.38) and (12.44) {ﬁ = &} we get:

T My
S
my = — Mg — Ny
nS
S
m, = —————— -Mg— My. 12.45
= Fus(o) t (1245)

Thus the mean response time is independent of the time distributions as it is based on (12.38)
and (12.44) (Little’s Law). However, E; ¢(0) will depend on the types of distributions in the
samE way as the Erlang-B formula. If the service time of the computer is exponentially
distributed (mean value m, = 1/u), then E; ¢(o) will be given by (12.37). Fig. 12.8 shows
the response time as a function of the number of terminals in this case.

If all time intervals are constant, the computer may work all the time serving K terminals
without any delay when:

ms + Mg

ms
= o+1. (12.46)

K is a suitable parameter to describe the point of saturation of the system. The average
waiting time for an arbitrary terminal is obtained from (12.45):

My = My — Mg

Example 12.5.2: Time sharing computer

In a terminal system the computer sometimes becomes idle (waiting for terminals) and the terminals
sometimes wait for the computer. Few terminals result in a low utilisation of the computer, whereas
many terminals connected will waste the time of the users.

Fig. 12.9 shows the waiting time traffic in erlang, both for the computer and for a single terminal.
An appropriate weighting by costs and summation of the waiting times for both the computer and
for all terminals gives the total costs of waiting.

For the example in Fig. 12.9 we obtain the minimum total delay costs for about 45 terminals when
the cost of waiting for the computer is hundred times the cost of one terminal. At 31 terminals
both the computer and each terminal spends 11.4 % of the time for waiting. If the cost ratio is 31,
then 31 is the optimal number of terminals. However, there are several other factors to be taken
into consideration. O
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Figure 12.8: The actual average response time experienced by a terminal as a function of the
number of terminals. The service-factor is ¢ = 30. The average response time converges to a
straight line, cutting the x-axes in S = 30 terminals. The average virtual response time for a
system with S terminals is equal to the actual average response time for a system with S + 1
terminals (the Arrival theorem, theorem 8.1).

Example 12.5.3: Traffic congestion
We may define the traffic congestion in the usual way (Sec. 2.3). The offered traffic is the traffic
carried when there is no queue. The offered traffic per source is (8.8):

B me

a = =
1+6 my + Mg

The carried traffic per source is:
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The traffic congestion becomes:

a—
C = Y
a
1 me + Mg B My
Me 4+ My +Ms My + My + Mg
¢ = Pw

In this case with finite number of sources the traffic congestion becomes equal to the proportion
of time spent waiting. For Erlang’s waiting time system the traffic congestion is zero because all
offered traffic is carried. O

Waiting time traffic [erlang]

1.0
- o=30
0.8
1 Computer
0.6
1 Per| terminal /
0.4
0.2
0.0 —t / . . . .
0 10 20 30 40 50 60 70

Number of terminals S

Figure 12.9: The waiting time traffic (the proportion of time spend waiting) measured in
erlang for the computer, respectively the terminals in an interactive queueing system (Service
factor o = 30).
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12.5.4 Machine-repair model with n servers

The above model is easily generalised to n computers. The transition diagram is shown in
Fig. 12.10.

(S—1)y (S—n+2)y (S—n+1l)y (S—n)y (S—n—-1)y 8l
@A@/\ /\ SO
~_ _~ ~_ _~
(n— l)u np np

Figure 12.10: State transition diagram for the machine-repair model with S terminals and n
computers.

The steady state probabilities become:

i = (9)(2) o 0<i<n,

N (S=n) [~ o )
p(i) = S <ﬁ> -p(n), n<i<§. (12.47)

where we have the normalisation constraint:

S
Zp(i) =1. (12.48)

We can show that the state probabilities are insensitive to the thinking time distribution as
in the case with one computer. (We get a state-dependent Poisson arrival process).

An arbitrary terminal is at a random point of time in one of the three possible states:

ps = p {the terminal is served by a computer},
pw = p {the terminal is waiting for service},

pi = p {the terminal is thinking}.
We have:

ps = %{Zz’-p(z‘)fz n~p(i)}, (12.49)

Po = 1—=ps—pr. (12.51)
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The mean utilisation of the computers becomes:

a="0g="s (12.52)
n n

The mean waiting time for a terminal becomes:

w1
wo="Le 2 (12.53)
Ds W
Sometimes p,, is called the loss coefficient of the terminals, and similarly (1 — «) is called the

loss coefficient of the computers (Fig. 12.9).

Example 12.5.4: Numerical example of scale of economy

The following numerical examples illustrate that we obtain the highest utilisation for large values
of n (and S). Let us consider a system with S/n = 30 and u/vy = 30 for a increasing number of
computers (in this case p; = ).

n 1 2 4 8 16
Ps 0.0289 | 0.0300 | 0.0307 | 0.0313 | 0.0316
Pw 0.1036 | 0.0712 | 0.0477 | 0.0311 | 0.0195
Pt 0.8675 | 0.8989 | 0.9215 | 0.9377 | 0.9489
a 0.8675 | 0.8989 | 0.9215 | 0.9377 | 0.9489

W [p™1] | 3.5805 | 2.3754 | 1.5542 | 0.9945 | 0.6155

12.6 Optimising the machine-repair model

In this section we optimise the machine/repair model in the same way as Palm did in 1947.
We have noticed that the model for a single repair-man is identical with Erlang’s loss system,
which we optimised in Chap. 7. We will thus see that the same model can be optimised in
several ways.

We consider a terminal system with one computer and S terminals, and we want to find an
optimal value of S. We assume the following structure of costs:

¢, = cost per terminal per time unit a terminal is thinking,
cw = cost per terminal per time unit a terminal is waiting,
cs = cost per terminal per time unit a terminal is served,

¢, = cost of the computer per time unit.
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The cost of the computer is supposed to be independent of the utilisation and is split uniformly
among all terminals.

30 Total costs Cp [x100]

25

20

15

\

0 10 20 30 40 50 60
Number of terminals S

Figure 12.11: The machine/repair model. The total costs given in (12.57) are shown as
a function of number of terminals for a service ratio p = 25 and a cost ratio r = 1/25
(cf. Fig. 7.6).

The outcome (product) of the process is a certain thinking time at the terminals (production
time).

The total costs ¢y per time unit a terminal is thinking (producing) becomes:

1
Z . (12.54)

Pt'COZPt'Ct+ps‘Cs+pw‘Cw+S

We want to minimise ¢o. The service ratio o = m;/my is equal to p;/ps. Introducing the cost
ratio r = ¢, /¢, , We get:

- C +l.c
o = Ct"—&'cs‘f—pw w S a
bt Pt

1 “pw + (1/S
= Ct"—_‘cs"i_ca'rp +(/ )7 (1255)
% Y2
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which is to be minimised as a function of S. Only the last term depends on the number of

terminals and we get:

min {co}

mgn{r'pw;:(l/s)}

mm{ (nw/S) + 1/5)}

/S

mn{T "w+1} (12.56)
LIRS R

min { 1 _rEf: 1} S+ 1} (12.57)

where Fj ¢(0) Is Erlang’s B-formula (12.36).

We notice that the minimum is independent of ¢; and ¢, and that only the ratio r = ¢, /¢,
appears. The numerator corresponds to (7.31), whereas the denominator corresponds to the
carried traffic in the corresponding loss system. Thus we minimise the cost per carried erlang
in the corresponding loss system. In Fig. 12.11 an example is shown. We notice that the
result deviates from the result obtained by using Moe’s Principle for Erlang’s loss system
(Fig. 7.6), where we optimise the profit.



Chapter 13

Applied Queueing Theory

Till now we have considered classical queueing systems, where all traffic processes are birth
and death processes. The theory of loss systems has been successfully applied for many years
within the field of telephony, whereas the theory of delay systems has been applied within
the field of data and computer systems. The classical queueing systems play a key role in
queueing theory. Usually, we assume that either the inter-arrival time distribution or the
service time distribution is exponentially distributed. For theoretical and physical reasons,
queueing systems with only one server are often analysed and widely applied.

In this chapter we first concentrate on the single server queue and analyse this system for
general service time distributions, various queueing disciplines, and for customers with pri-
orities.

13.1 Classification of queueing models

In this section we shall introduce a compact notations for queueing systems, called Kendall’s
notation.

13.1.1 Description of traffic and structure

D.G. Kendall (1951 [61]) has introduced the following notation for queueing models:
A/B/n

where
A = arrival process,
B = service time distribution,
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n = number of servers.
For traffic processes we use the following standard notations (cf. Sec. 4.5):

M~ Markovian. Exponential time intervals (Poisson arrival process,
exponentially distributed service times).

D ~  Deterministic. Constant time intervals.

E,  ~ Erlang-k distributed time intervals (E; = M).

H, ~ Hyper-exponential of order n distributed time intervals.
Cox ~ Cox-distributed time intervals.

Ph  ~ Phase-type distributed time intervals.

GI  ~ General Independent time intervals, renewal arrival process.

G ~ General. Arbitrary distribution of time intervals (may include correlation).

Example 13.1.1: Ordinary queueing models

M/M/n is a pure delay system with Poisson arrival process, exponentially distributed service times
and n servers. It is the classical Erlang delay system (Chap. 12).

GI/G/1 is a general delay system with only one server.

The above mentioned notation is widely used in the literature. For a complete specification
of a queueing system more information is required:

A/B/n/K/S/X
where:
K = the total capacity of the system, or only the number of waiting positions,
S = the population size (number of customers),
X = queueing discipline (Sec. 13.1.2).

K = n corresponds to a loss system, which is often denoted as A/B/n—Loss.
A superscript b on A, respectively B, indicates group arrival (bulk arrival, batch arrival),

respectively group service. C' (Clocked) may indicate that the system operates in discrete
time. Full accessibility is usually assumed.

13.1.2 Queueing strategy: disciplines and organisation

Customers in a queue waiting to be served can be selected for service according to many
different principles. We first consider the three classical queueing disciplines:
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FCFS: First Come — First Served.
It is also called a fair queue or an ordered queue, and this discipline is often preferred
in real-life when customers are human beings. It is also denoted as FIFO: First
In — First Out. Note that FIFO refers to the queue only, not to the total system.
If we have more than one server, then a customer with a short service time may
overtake a customer with a long waiting time even if we have FIFO queue.

LCFS: Last Come — First Served.
This corresponds to the stack principle. It is for instance used in storages, on
shelves of shops etc. This discipline is also denoted as LIFO: Last In — First Out.

SIRO: Service In Random Order.
All customers waiting in the queue have the same probability of being chosen for
service. This is also called RANDOM or RS (Random Selection).

The first two disciplines only take arrival times into considerations, while the third does not
consider any criteria at all and so does not require any memory (contrary to the first two).

They can be implemented in simple technical systems. Within an electro-mechanical tele-
phone exchange the queueing discipline SIRO was often used as it corresponds (almost) to
sequential hunting without homing.

For the three above-mentioned disciplines the total waiting time for all customers is the same.
The queueing discipline only decides how waiting time is allocated to the individual customers.
In a program-controlled queueing system there may be more complicated queueing disciplines.
In queueing theory we in general assume that the total offered traffic is independent of the
queueing discipline.

For computer systems we often try to reduce the total waiting time. It can be done by using
the service time as criterion:

SJE: Shortest Job First (SJIN = Shortest Job Next, SPF = Shortest Processing time
First). This discipline assumes that we know the service time in advance and it
minimises the total waiting time for all customers.

The above mentioned disciplines take account of either the arrival times or the service times.
A compromise between these disciplines is obtained by the following disciplines:

RR: Round Robin.
A customer served is given at most a fixed service time (time slice or slot). If the

service is not completed during this interval, the customer returns to the queue
which is FCFS.

PS:  Processor Sharing.
All customers share the service capacity equally.



252 CHAPTER 13. APPLIED QUEUEING THEORY

FB: Foreground — Background.
This discipline tries to implement SJF without knowing the service times in ad-
vance. The server will offer service to the customer who so far has received the
least amount of service. When all customers have obtained the same amount of
service, FB becomes identical with PS.

The last mentioned disciplines are dynamic as the queueing disciplines depend on the amount
of time spent in the queue.

13.1.3 Priority of customers

In real life customers are often divided into N priority classes, where a customer belonging to
class p has higher priority than a customer belonging to class p+1. We distinguish between
two types of priority:

Non-preemptive = HOL:
A new arriving customer with higher priority than a customer being served waits until
a server becomes idle (and all customers with higher priority have been served). This
discipline is also called HOL = Head-Of-the-Line.

Preemptive:
A customer being served having lower priority than a new arriving customer is inter-
rupted. We distinguish between:

— Preemptive resume = PR:
The service is continued from, where it was interrupted,

— Preemptive without re-sampling:
The service restarts from the beginning with the same service time, and

— Preemptive with re-sampling:
The service starts again with a new service time.

The two latter disciplines are applied in for example manufacturing systems and reliability.
Within a single class, we have the disciplines mentioned in Sec. 13.1.2.

In queueing literature we meet many other strategies and symbols. GD denotes an arbi-
trary queueing discipline (general discipline). The behaviour of customers is also subject to
modelling:

— Balking refers to queueing systems, where customers with a queue dependent probability
may give up joining the queue.

— Reneging refers to systems with impatient customers which depart from the queue without
being served.
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— Jockeying refers to the systems where the customers may jump from one (e.g. long) queue
to another (e.g. shorter) queue.

Thus there are many different possible models. In this chapter we shall only deal with the
most important ones. Usually, we only consider systems with one server.

Example 13.1.2: Stored Program Controlled (SPC) switching system

In SPC-systems tasks of the processors are divided into for example ten priority classes. The
priority is updated for example every 5th millisecond. Error messages from a processor have the
highest priority, whereas routine tasks of control have the lowest priority. Serving accepted calls has
higher priority than detection of new call attempts. O

13.2 General results in the queueing theory

As mentioned earlier there are many different queueing models, but unfortunately there are
only few general results in the queueing theory. The literature is very extensive, because many
special cases are important in practice. In this section we shall look at the most important
general results.

Little’s theorem presented in Sec. 5.3 is the most general result which is valid for an arbitrary
queueing system. The theorem is easy to apply and very useful in many cases.

In general only queueing systems with Poisson arrival processes are simple to deal with.
Concerning queueing systems in series and queueing networks (e.g. computer networks) it is
important to know cases, where the departure process from a queueing system is a Poisson
process. These queueing systems are called symmetric queueing systems, because they are
symmetric in time, as the arrival process and the departure process are of same type. If we
make a film of the time development, we cannot decide whether the film is run forward or
backward (cf. reversibility) (Kelly, 1979 [60]).

The classical queueing models play a key role in the queueing theory, because other systems

will often converge to them when the number of servers increases (Palm’s theorem 6.1 in
Sec. 6.4).

Systems that deviate most from the classical models are the systems with a single server.
However, these systems are also the simplest to deal with.

In waiting time systems we also distinguish between call averages and time averages. The
virtual waiting time is the waiting time, a customer experiences if the customer arrives at a
random point of time (time average). The actual waiting time is the waiting time, the real
customers experiences (call average). If the arrival process is a Poisson process, then the two
averages are identical.
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13.3 Pollaczek-Khintchine’s formula for M/G/1

We have earlier derived the mean waiting time for M/M/1 (Sec. 12.2.4) and later we consider
M/D/1 (Sec. 13.5). In general the mean waiting time for M/G/1 is given by:

Theorem 13.1 Pollaczek-Khintchine’s formula (1930-32):

Vv
W = — 13.1
1_A7 ( )
A-s
as A\
S

W is the mean waiting time for all customers, s is the mean service time, A is the offered
traffic, and € is the form factor of the holding time distribution (3.10).

The more regular the service process is, the smaller the mean waiting time will become. The
corresponding results for the arrival process is studied in Sec. 13.6. In real telephone traffic
the form factor will often be 4 — 6, in data traffic 10 — 100.

Formula(13.2) is one of the most important results in queueing theory, and we will study it
carefully.

13.3.1 Derivation of Pollaczek-Khintchine’s formula

We consider the queueing system M/G/1 and we wish to find the mean waiting time for an
arbitrary customer. It is independent of the queueing discipline, and therefore we may in the
following assume FCFS. Due to the Poisson arrival process (PASTA-property) the actual
waiting time of a customers is equal to the virtual waiting time.

The mean waiting time W for an arbitrary customer can be split up into two parts:

1. The average time it takes for a customer under service to be completed. When the new
customer we consider arrives at a random point of time, the residual mean service time
given by (3.25): s

mir = 5 "€,
where s and € have the same meaning as in (13.2). When the arrival process is a Poisson
process, the probability of finding a customer being served is equal to A because for a

single server system we always have py = 1 — A (offered traffic = carried traffic).
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The contribution to the mean waiting time from a customer under service therefore
becomes:

Vo= (1—A)-0+A-§-g

= oma, (13.4)

2. The waiting time due to waiting customers in the queue (FCFS). On the average the
queue length is L. By Little’s theorem we have

L=X\W,

where L is the average number of customers in the queue at an arbitrary point of time,
A is the arrival intensity, and W is the mean waiting time which we look for. For every
customer in the queue we shall on an average wait s time units. The mean waiting time
due to the customers in the queue therefore becomes:

Ls=XA-W-s=A-W. (13.5)

We thus have the total waiting time (13.4) & (13.5):

W = V+AW,
1%
W= 1—A
B A-s
T o20-4) %

which is Pollaczek-Khintchine’s formula (13.2). W is the mean waiting time for all customers,
whereas the mean waiting time for delayed customers w becomes (A = D = the probability

of delay) (3.20):
|44 S
-7 e, 13.6
YTDToa—a) " (13.6)
The above-mentioned derivation is correct since the time average is equal to the call average
when the arrival process is a Poisson process (PASTA-property). It is interesting, because it

shows how ¢ enters into the formula.

13.3.2 Busy period for M/G/1

A busy period of a queueing system is the time interval from the instant all servers become
busy until a server becomes idle again. For M/G/1 it is easy to calculate the mean value of
a busy period.
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At the instant the queueing system becomes empty, it has lost its memory due to the Poisson
arrival process. These instants are regeneration points (equilibrium points), and next event
occurs according to a Poisson process with intensity .

We need only consider a cycle from the instant the server changes state from idle to busy till
the next time it changes state from idle to busy. This cycle includes a busy period of duration
T, and an idle period of duration 7. Fig. 13.1 shows an example with constant service time.
The proportion of time the system is busy then becomes:

State

Busy - —m—mm—mm———m™——

-<—h—>

Time

Idle T T

|

. |

Arrivals |
| | |

1

|

| Ty To—=

Figure 13.1: Example of a sequence of events for the system M/D/1 with busy period T} and
idle period Ty.

L IV S
M1+ mr, + mm

From mp, = 1/\, we get:
s

T1-A
During a busy period at least one customer is served.

(13.7)

mTl

13.3.3 Waiting time for M/G/1

If we only consider customers, which are delayed, we are able to find the moments of the
waiting time distribution for the classical queueing disciplines (Abate & Whitt, 1997 [1]).

FCFS : Denoting the i’th moment of the service time distribution by m;, we can find the
k’th moment of the waiting time distribution by the following recursion formula,
where the mean service time is chosen as time unit (m; = s = 1):

A k LUTES]
mgr = m Z (]) . i 1 cMp_jF, MoF= 1. (138)

J=1
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LCFS : From the above moments my, r of the FCF'S-waiting time distribution we can find
the moments my, , of the LCEF'S-waiting time distribution. The three first moments
become:

Mo e TBF +3-myp-mor
1-A° L (1—A)?

(13.9)

myL=myF, mo L =

13.3.4 Limited queue length: M/G/1/k

In real systems the queue length, for example the size of a buffer, will always be finite.
Customers arriving when the buffer is full are blocked. For example in the Internet, this
strategy is applied in routers and is called the drop tail strategy. There exists a simple
relation between the state probabilities p(i) (i = 0,1,2,...) of the infinite system M/G/1
and the state probabilities px (i), (i = 0,1,2,...,k) of M/G/1/k, where the total number of

positions for customers is &, including the customer being served (Keilson, 1966 [59]):
(i) = IO S A (13.10)
(1—A-Qx)
(1-A4) Q
By = -4 &r 13.11
N R RN N

where A < 1 is the offered traffic, and:
Qv=3"n(j). (13.12)
j=k

There exists algorithms for calculating p(i) for arbitrary holding time distributions (M/G/1)
based on imbedded Markov chain analysis (Kendall, 1953 [62]), where the same approach is
used for (GI/M/1).

We notice that the above is only valid for A < 1, but for a finite buffer we also obtain
statistical equilibrium for A > 1. In this case we cannot use the approach described in this
section. For M/M/1/k we can use the finite state transition diagram, and for M/D/1/k
we describe a simple approach in Sec. 13.5.8, which is applicable for general holding time
dsitributions.

13.4 Priority queueing systems: M/G/1

The time period a customer is waiting usually means an inconvenience or expense to the cus-
tomer. By different strategies for organising the queue, the waiting times can be distributed
among the customers according to our preferences.
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13.4.1 Combination of several classes of customers

The customers are divided into N classes (traffic streams). Customers of class i are assumed
to arrive according to a Poisson process with intensity ); [customers per time unit] and the
mean service time is s; [time units]. The second moment of the service time distribution is
denoted mo;, and the offered traffic is A; = \; - s;.

In stead of considering the individual arrival processes, we may consider the total arrival
process, which also is a Poisson arrival process with intensity:

A=)\ (13.13)

The resulting service time distribution then becomes a weighted sum of service time distri-
butions of the individual classes (Sec. 3.2: combination in parallel). The total mean service
time becomes:

(13.14)

V)

I
AMZ
>| >
&

s
Il
—

and the total second moment is:

&

I
>| >
s

s
Il
—

(13.15)
The total offered traffic is:
N N
A=D"A4=> N s;=As. (13.16)
i=1 i=1

The remaining mean service time at a random point of time becomes (13.4):

1
Vo= 5oAm (13.17)
1
IS
2 S
1 N oA R LA
Spa i) {2
1 Noa) T (Mo
_ 1. Al Z
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N \.
vV = L omy, 13.18
N
= ) V. (13.19)
i=1
U(t) Load function
S7
S3
_ N
| |
| | |
[ S5 [
s | | |
] ! | | 84 | |
| | | | |
0 I j I— T j ] I— I
T1 T2 T3 T4 T5 T6 T7 Tlme

Figure 13.2: The load function U(t) for the queueing system GI/G/1. If we denote the inter-
arrival time T;,1 — T; by a;, then we have U; ;1 = max{0,U; + s; — a;}, where U; is the value
of the load function at time T;.

13.4.2 Work conserving queueing disciplines

In the following we shall assume that the service time of a customer is independent of the
queueing discipline. The capacity of the server is thus constant and independent of for
example the length of the queue. The queueing discipline is said to be work conserving.
This will not always be the case in practise. If the server is a human being, the service rate
will often increase with the length of the queue, and after some time the server may become
exhausted and the service rate decreases.

We introduce two functions, which are widely applied in the queueing theory.
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Load function U(t) denotes the time, it will require to serve the customers, which has arrived
to the system at time ¢ (Fig. 13.2). At a time of arrival U(t) increases with a jump
equal to the service time of the arriving customer, and between arrivals U(t) decreases
linearly with the slope —1 until 0, where it stays until next arrival time. The mean value
of the load function is denoted by U = E{U(¢t)}. In a GI/G/1 queueing system U (t)
will be independent of the queueing discipline, if it is work conserving.

The virtual waiting time W (t) denotes the waiting time of a customer, if he arrives at time
instant ¢. The virtual waiting time W (¢) depends on the queue organisation. The mean
value is denoted by W = E{W (t)}. If the queue discipline is FCF'S, then U (t) = W (t).
When we consider Poisson arrival processes, the virtual waiting time will be equal to
the actual waiting time (PASTA property: time average = call average).

We now consider the load function at a random point of time ¢. It consists of a contribution
V from the remaining service time of a customer being served, if any, and a contribution from
customers waiting in the queue. The mean value U = E{U(t)} becomes:

N
U=V+> Li-s;.
=1

L; is the queue length for customers of type 7. By applying Little’s law we get:

N
i=1

N
= V+) AW (13.20)

i=1

As mentioned above, U is the independent of the queueing discipline (the system is assumed
to be work conserving), and V' is given by (13.17) for non-preemptive queueing disciplines.
U is obtained by assuming FCFS, as we then have W; = U:

N
U= V+Y A4-U=V+AU,

i=1
V
= — 13.21
AV
— = —. 13.22
U-V = T (13.22)

Under these general assumptions we get by inserting (13.22) into (13.20) Kleinrock’s conser-
vation law (1964 [65]):
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Theorem 13.2 Kleinrock’s conservation law:

N
AV
;Ai W, = T A~ constant. (13.23)

The average waiting time for all classes weighted by the traffic (load) of the mentioned class,
1s independent of the queue discipline.

Notice that the above is only valid for non-preemptive queueing disciplines. We may thus
give a small proportion of the traffic a very low mean waiting time, without increasing the
average waiting time of the remaining customers very much. By various strategies we may
allocate waiting times to individual customers according to our preferences.

13.4.3 Non-preemptive queueing discipline

In the following we look at the M/G/1 priority queueing systems, where customers are
divided into N priority classes so that a customer with the priority p has higher priority
than customers with priority p + 1. In a non-preemptive system a service in progress is not
interrupted.

The customers in class p are assumed to have the mean service time s, and the arrival intensity
Ap. In Sec. 13.4.1 we derived parameters for the total process.

The total average waiting time W, of a class p customers can be derived directly by considering
the following three contributions:

a) The residual service time V' for the customer under service.

b) The waiting time, due to the customers in the queue with priority p or higher, which
are already in the queues (Little’s theorem):

p

=1

¢) The waiting time due to customers with higher priority, which overtake the customer
we consider while this is waiting:

p—1

In total we get:

1
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For customers of class 1, which have highest priority we get under the assumption of FCFS:

W1 =V + L1 *S1 (1325)
= V+4+A -Wy,
V
Wy = . 13.26
! 1— A, (13.26)

V' is the residual service time for the customer under service when the customer we consider
arrives (13.18):

N A
V= ; 5 M, (13.27)
where mey; is the second moment of the service time distribution of the i’th class.
For class 2 customers we find:
Wy=V 4+ Ly-s1+ La- s+ Wy (s1\).
Inserting W, (13.25), we get:

WQ - W1+A2'W2+A1'W2,

Wi
S T 13.2
W 1— A — Ay’ (13.28)

v
W, = A AT A (13.29)

In general we find (Cobham, 1954 [11]):

1%
W, = , 13.30
A - (15:30)
where: )
A =>"4;, Ag=0. (13.31)
=0

The structure in formula (13.30) can be directly interpreted. No matter which class all
customers wait until the service in progress is completed {V'}.

Furthermore, the waiting time is due to customers who have already arrived and have at least
the same priority {A;}, and customers with higher priority arriving during the waiting time

A}
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Example 13.4.1: SPC-system

We consider a computer which serves two types of customers. The first type has the constant
service time of 0.1 second, and the arrival intensity is 1 customer/second. The other type has the
exponentially distributed service time with the mean value of 1.6 second and the arrival intensity is
0.5 customer/second.

The load from the two types customers is then A; = 0.1 erlang, respectively As = 0.8 erlang.

From (13.27) we find:
1 .
V==--(01)>%+ %

=3 -2+ (1.6)* = 1.2850 s..

Without any priority the mean waiting time becomes by using Pollaczek-Khintchine’s formula (13.2):

1.2850
W=— """ _1285s.
1-(08+0.1) §

By non-preemptive priority we find:

Type 1 highest priority:

1.285
= =14
Wi 101 B
Wi
Wy = —————— =14.28s.
2 1— (Al —+ Ag)
Type 2 highest priority:
Wy, = 643 s,
W, = 64.25s.

This shows that we can upgrade type 1 almost without influencing type 2. However the inverse is
not the case. The constant in the Conservation law (13.23) becomes the same without priority as
with non—preemptive priority:

0.9-1285=0.1-143+08-14.28=0.8-6.43 +0.1-64.25 = 11.57.

13.4.4 SJF-queueing discipline: M/G/1

By the SJF-queueing discipline the shorter the service time of a customer is, the higher is the
priority. By introducing an infinite number of priority classes, we obtain from the formula
(13.30) that a customer with the service time ¢ has the mean waiting time W, (Phipps 1956):

v

W=y,
-4

(13.32)
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where A; is load from the customers with service time less than or equal to t.
The SJF discipline results in the lowest possible total waiting time.

If these different priority classes have different costs per time unit when they wait, so that
class j customers have the mean service time s; and pay ¢; per time unit when they wait, then
the optimal strategy (minimum cost) is to assign priorities 1,2, ... according to increasing
ratio s;/c;.

Example 13.4.2: M /M /1 with SJF queue discipline

We consider the case with exponentially distributed holding times with the mean value 1/u that
is chosen as time unit (M/M/1). Even though there are few very long service times, then they
contribute significantly to the total traffic (Fig. 3.2).

The contribution to the total traffic A from the customers with service time < ¢ is {(3.22) multiplied
by A= \-pu}:

A = /Ota:-)\~f(3:)dx

= /t:z:-)\~(,u~e”x) dz
0
= A{l—eM(ut+1)}.

Inserting this in (13.32) we find W} as illustrated in Fig. 13.3, where the FCFS-strategy (same mean
waiting time as LCFS and SIRO) is shown for comparison as function of the actual holding time.
The mean waiting time for all customers with SJF' is less than with FCFS, but this is not evident
from the figure. The mean waiting time for SJF becomes:

Wep = /0 Wy f(t)dt

= /0 7(1 VAt)2 S f(t)dt

B /oo A et dt
o {1—AQ —emt(ut+ 1))

which it is not elementary to calculate. O
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Figure 13.3: The mean waiting time W, is a function of the actual service time in a M/M/1—
system for SJF and FCFS disciplines, respectively. The offered traffic is 0.9 erlang and the
mean service time is chosen as time unit. Notice that for SJF' the minimum average waiting
time is 0.9 time units, because an eventual job being served must first be finished. The
maximum mean waiting time is 90 time units. In comparison with FCFS, by using SJF 93.6
% of the jobs get shorter mean waiting time. This corresponds to jobs with a service time
less than 2.747 mean service times (time units). The offered traffic may be greater than one
erlang, but then only the shorter jobs get a finite waiting time.
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13.4.5 M/M/n with non-preemptive priority

We may also generalise Erlang’s classical waiting time system M/M/n with non—preemptive
queueing disciplines, when all classes of customers have the same exponentially distributed
service time distribution with mean value s = p~!. Denoting the arrival intensity for class ¢
by A;, we have the mean waiting time W, for class p:

P p—1
W, = V+Z§~Li+wng&,
=1 =1

p
S SN\
TR SPIENS oL

=1

p—1
s
A is the total offered traffic for all classes. The probability E,,(A) for waiting time is given
by Erlang’s C-formula, and customers are terminated with the mean inter-departure time
s/n when all servers are busy. For highest priority class p = 1 we find:

s 1
W1 - EQ’H(A) ﬁ + ﬁ A1W1 y

S

= Fy5,(A)- ) 13.
Wi = Ba(4) —— (13.33)
For p = 2 we find in a similar way:
1 1
W2 — EQ’H(A) E + —A1W1 —|— —Ag W2 —|— W2 {f . )\1}
n o n n n
1 1
= Wi+ -AyWot+ —- A1 Ws,
n n
ns By, (A)
Wy = : . 13.34
P A {n— (A + A} (13.34)
In general we find (Cobham, 1954 [11]):
Es (A
W, = s BanlA) (13.35)

oA {n- A

13.4.6 Preemptive-resume queueing discipline

We now assume that an ongoing service is interrupted by the arrival of a customer with a
higher priority. Later the service continues from where it was interrupted. This situation is
typical for computer systems. For a customer with the priority p, the customers with lower
priority do no exist. The mean waiting time W, for a customer in class p consists of two
contributions.
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a) Waiting time due to customers with higher or same priority, who are already in the
queueing system. This is the waiting time experienced by a customer in a system
without priority where only the first p classes exists:

Vo
1A

P
s
here V, = = omay,, 13.36
wher » Zzl 5 M, ( )
is the expected remaining service time due to customers with a higher or the same
priority and A is given by (13.31).

b) The waiting time due to the customers with higher priority who arrive during the
waiting time or service time and overtake the customer considered:

p—1
Wyt 5) > si-hi= (W, +5,)- A,
i=1
We thus get:
v
Wy, = 1 _pA, + (Wp + 5p) A;fl
P
This can be rewritten as follows:
V
Wp(l— A, ) = {1_—pA,} +sp Ay,
P
resulting in:
Ve Ay

W, = Sy (13.37)

(1-4,,) (1-4) I A,

In the same way as in Sec. 13.4.4 we may write the formula for the average waiting time for
the SJF—queueing discipline with preemptive resume. The total response time becomes:

T,=W,+s,. (13.38)

Example 13.4.3: SPC—system (cf. example 13.4.1)
We now assume the computer system in Example 13.4.1 is working with the discipline preemptive-
resume and find:

Type 1 highest priority:

W, = %(0'1)2+0—00056
L I T
1.2850 0.1
Wy, = + 1.6 = 14.46 s .

(1-01)(1-0.9)  1-0.1
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Type 2 highest priority:

—_—_— %-0.5-2-(1.6)2+0_640
2T 1-038 R
1.2 :
W = 50 + 0% 01 =6465s.

(1-08)(1—-09)  1-08

This shows that by upgrading type 1 to the highest priority, we can give these customers a very
short waiting time, without disturbing type 2 customers, but the inverse is not the case.

The conservation law is only valid for preemptive queueing systems if the preempted service times are
exponentially distributed. In the general case a job may be preempted several times and therefore
the remaining service time will not be given by V. O

13.4.7 M/M/n with preemptive-resume priority

For M/M/n the case of preemptive resume is more difficult to deal with. All customers must
have the same mean service time. Mean waiting time can be obtained by first considering
class one alone (12.15), then consider class one and two together, which implies the waiting
time for class two, etc. The conservation law is valid when all customers have the same
exponentially distributed service time.

13.5 Queueing systems with constant holding times

In this section we focus upon the queueing system M/D/n, FCFS. Systems with constant
service times have the particular property that the customers leave the servers in the same
order in which they are accepted for service.

13.5.1 Historical remarks on M/D/n

Queueing systems with Poisson arrival process and constant service times were the first
systems to be analysed. Intuitively, one would think that it is easier to deal with constant
service times than with exponentially distributed service times, but this is definitely not
the case. The exponential distribution is easy to deal with due to its lack of memory: the
remaining life-time has the same distribution as the total life-time (Sec. 4.1), and therefore
we can forget about the epoch (point of time) when the service time starts. Constant holding
times require that we remember the exact starting time.

Erlang was the first to analyse M/D/n, FCFS (Brockmeyer & al., 1948 [11]):
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Erlang: 1909 n =1 errors for n > 1,
Erlang: 1917 n=1,2,3  without proof,

Erlang: 1920 n arbitrary explicit solutions for n = 1,2, 3.

Erlang derived the waiting time distribution, but did not consider the state probabilities.
Fry (1928 [30]) also dealt with M/D/1 and derived the state probabilities (Fry’s equations of
state) by using Erlang’s principle of statistical equilibrium, whereas Erlang himself applied
more theoretical methods.

Crommelin (1932 [20], 1934 [21]), a British telephone engineer, presented a general solution
to M/D/n. He generalised Fry’s equations of state to an arbitrary n and derived the waiting
time distribution, now named Crommelin’s distribution.

Pollaczek (1930-34) presented a very general time-dependent solution for arbitrary service
time distributions. Under the assumption of statistical equilibrium he was able to obtain
explicit solutions for exponentially distributed and constant service times. Also Khintchine
(1932 [63]) dealt with M/D/n and derived the waiting time distribution.

13.5.2 State probabilities of M/D/1

Under the assumption of statistical equilibrium we now derive the state probabilities for
M/D/1 in a simple way. The arrival intensity is denoted by A and the constant holding time
by h. As we consider a pure waiting time system with a single server we have:

Oftered traffic = Carried traffic = A-h < 1, (13.39)
le.
A=Y =X-h=1-p(0),

as in every state except zero the carried traffic is equal to one erlang.

We consider two epochs (points of time) ¢ and ¢+ h at a distance of h. Every customer being
served at epoch ¢ (at most one) has left the server at epoch t + h. Customers arriving during
the interval (¢, t+h) are still in the queueing system at epoch ¢+ h (waiting or being served).

The arrival process is a Poisson process. Hence we have a Poisson distributed number of
arrivals in the time interval (¢, ¢ + h):

: : : QY0NS VI
p(j,h) = p{j calls in h} = i e j=0,1,2.... (13.40)

The probability of being in a given state at epoch t + h is obtained from the state at epoch ¢
by taking account of all arrivals and departures during (¢, t+ h). By looking at these epochs
we obtain a Markov Chain embedded in the original traffic process (Fig. 13.4).
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State State Arrivals in
(t, t+h)
-+ i+2 3
i+1 2
i i 1
-+ i-1 0
t T ¢ ¢ t+h Time
Arrival Departure Arrival

Figure 13.4: Ilustration of Fry’s equations of state for the queueing system M/D/1.

We obtain Fry’s equations of state for n = 1 (Fry, 1928 [30]):

Pean(i) = {p(0) + (1)} p(i, b)) + Zpt(j) p(i—j+1,h) (13.41)
Above we found:
p(0)=1-A4

and under the assumption of statistical equilibrium p;(7) = py4 (), we successively find:
p(1) = (1=A4)-{e" —1},

p(2) = (I_A)'{—GA-(l—{—A)_}_eQA}’

and in general:

p(i)=(1—A)- Z(—l)i—j el {Eﬁ);‘ + (,5]:4;__]_1)! } . i=2,3,... (13.42)

J=1

The last term corresponding to j = i always equals e, as (—1)! = co. In principle p(0) can
also be obtained by requiring that all state probabilities must add to one.

13.5.3 Mean waiting times and busy period of M/D/1

For a Poison arrival process the probability of delay D is equal to the probability of not being
in state zero (PASTA property):

D=A=1-p(0). (13.43)
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W denotes the mean waiting time for all customers and w denotes the mean waiting time for
customers experiencing a positive waiting time. We have for any queueing system (3.20):

= —. 13.44
w=— (13.44

W and w are easily obtained by using Pollaczek-Khintchine’s formula (13.2):

A-h
h

The mean value of a busy period was obtained for M/G/1 in (13.7) and illustrated for constant

service times in Fig. 13.1:
h

The mean waiting time for delayed customers are thus half the busy period. It looks like
customers arrive at random during the busy period, but we know that are no customers arrive

during the last service time of a busy period.

The distribution of the number of customer arriving during a busy period can be shown to
be given by a Borél distribution:

B(i) = e 4 i=1,2,... (13.48)

13.5.4 Waiting time distribution: M/D/1, FCFS

This can be shown to be:

A — +j 4
pW <ty =1-(1- Z il ]T +TJ} LM (13.49)

where h = 1 is chosen as time unit, t =T + 7, T' is an integer, and 0 < 7 < 1.

The graph of the waiting time distribution has an irregularity every time the waiting time
exceeds an integral multiple of the constant holding time. An example is shown in Fig. 13.5.

Formula (13.49) is not suitable for numerical evaluation. It can be shown (Iversen, 1982 [39])
that the waiting time can be written in a closed form, as given by Erlang in 1909:

A( —t .
p{W <t} = Z{ J e (13.50)
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P(W>t) Complementary waiting time distribution
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Figure 13.5: The complementary waiting time distribution for all customers in the queueing
system M/M/1 and M/D/1 for ordered queue (FCFS). Time unit = mean service time. We
notice that the mean waiting time for M/D/1 is only half of that for M/M/1.

which is fit for numerical evaluation for small waiting times.

For larger waiting times we are usually only interested in integral values of ¢. It can be shown
(Iversen, 1982 [39]) that for an integral value of ¢ we have:

p{W <t} =p(0) +p(1)+---+p(t). (13.51)

The state probabilities p(i) are calculated most accurately by using a recursive formula based
on Fry’s equations of state (13.42):

pli+1) = ]ﬁ {p(i) —{p(0) +p(1)} - p(i, h) ZP pli—j+1, h)} (13.52)

For non-integral waiting-times we are able to express the waiting time distribution in terms
of integral waiting times.

If we let h =1, then (13.50) may be a binomial expansion be written in powers of 7, where

t=T+7, T integer, 0<7<1.
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We find:
(=AT)

p{W <T+7}=eV ”
4!

p{W < T —j}, (13.53)

M-

j=0

where p{W < T — j} is given by (13.51).

The numerical evaluation is very accurate when using (13.51), (13.52) and (13.53).

13.5.5 State probabilities: M/D/n

When setting up Fry’s equations of state (13.41) we obtain more combinations:

Pean(i) = {Zpt(j)}p(i,h) + Z pe(4) - p(n+i—jh). (13.54)

On the assumption of statistical equilibrium (A < n) we can leave the absolute points of time
out of account:

p(i) = {Zp(j)}p(z',h>+ ’Z p(j) - plin+i—jh), i=0,1,... (13.55)

The system of equations (13.55) can only be solved directly by substitution, if we know the
first n state probabilities {p(0), p(1),...,p(n—1)}. In practice we may obtain numerical values
by guessing an approximate set of values for {p(0), p(1), ... ,p(n—1)}, then substitute these
values in the recursion formula (13.55) and obtain new values. After a few approximations
we obtain the exact values.

The explicit mathematical solution is obtained by means of generating functions (The Erlang
book, [11] pp. 75-83).

13.5.6 Waiting time distribution: M/D/n, FCFS

The waiting time distribution is given by Crommelin’s distribution:

p{W<t)=1- i Zp(k) . Z {{A(J _. T>}(T+j+1)n_1._i. (13.56)

where A is the offered traffic and

t=T h+r, 0<7<h. (13.57)
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Formula (13.56) can be written in a closed form in analogy with (13.50):

n—1 1 n+n—1—i
p{W <t} =>"Y pk Z{Aj_t P auen (13.58)

— 1 =2V
= {j-n+n—-1—-1i}!

For integral values of the waiting time t we have:

n(t+1)—1

piW<th= > p(i). (13.59)

Jj=0

For non-integral waiting times t = T'+ 7, T integer, 0 < 7 < 1, we are able to express the
waiting time distribution in terms of integral waiting times as for M/D/1:

pIW <t} =p(W<T+r}=e">" { (_;;T)j Y (i>} 7 (13.60)

J=0

where k = n(T + 1)—1 and p(7) is the state probability (13.55).

The exact mean waiting time of all customers W is difficult to derive. An approximation was
given by Molina:

"y (A) . .1_(é)n+1
n+1 " n—A 4

W~ (13.61)

A:

For any queueing system with infinite queue we have (3.2()):

%74
W= —
D )
where for all values of n: )
D=1-> p(j)
=0

13.5.7 Erlang-k arrival process: E;/D/r

Let us consider a queueing system with n = r-k servers (r, k integers), general arrival process
GI, constant service time and ordered (FCF'S) queueing discipline. Customers arriving during
idle periods choose servers in cyclic order

1,2,...,.n—1,n,1,2,...

Then a certain server will serve just every n’th customers as the customers due to the constant
service time depart from the servers in the same order as they arrive at the servers. No
customer can overtake another customer.
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A group of servers made up from the servers
v, e+kx+2-k...,x+(r—1)-k, 0<x<k. (13.62)

will serve just every k'th customer. If we consider the servers (13.62), then considered as a
single group they are equivalent to the queueing system GI*/D/r, where the arrival process
GI* is a convolution of the arrival time distribution by itself & times.

The same goes for the k—1 other systems. The traffic in these k systems is mutually correlated,
but if we only consider one system at a time, then this is a GI**/D/n, FCFS queueing system.

The assumption about cyclic hunting of the servers is not necessary within the individual
systems (13.62). State probabilities, mean waiting times etc. are independent of the queueing
discipline, which is of importance for the waiting time distribution only.

If we let the arrival process GI be a Poisson process, then GI** becomes an Erlang-k arrival
process. We thus find that the following systems are equivalent with respect to the waiting
time distribution:

M/D/r-k, FOFS = E,/D/r, FCFS .
Ey/D/r may therefore be dealt with by tables for M/D/n.

Example 13.5.1: Regular arrival processes

In general we know that for a given traffic per server the mean waiting time decreases when the
number of servers increases (economy of scale, convexity). For the same reason the mean waiting
time decreases when the arrival process becomes more regular. This is seen directly from the above
decomposition, where the arrival process for Ej/D/r becomes more regular for increasing k (r
constant). For A = 0.9 erlang per server (L = mean queue length) we find:

E4/E1/2: L =4.5174 |
E4/Es/2: L = 2.6607 ,
E4/Es3/2: L = 2.0493 |,
E4/D/2: L = 0.8100 .

13.5.8 Finite queue system: M/D/1/k

In real systems we always have a finite queue. In computer systems the size of the storage
is finite and in ATM systems we have finite buffers. The same goes for waiting positions in
FMS (Flexible Manufacturing Systems).

As mentioned in Sec. 13.3.4 the state probabilities py (i) of the finite buffer system are obtained
from the state probabilities p(i) of the infinite buffer system by using (13.10) & (13.11).
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Integral waiting times are obtained from the state probabilities, and non-integral waiting
times from integral waiting times as shown above (Sec. 13.5.4).

For the infinite buffer system the state probabbilities only exist when the offered traffic is less
than the capacity (A < n). But for a finite buffer system the state probabilities also exist for
A > n, but we cannot obtain them by the above-mentioned method.

For M/D/1/k the finite buffer state probabilities px (i) can be obtained for any offered traffic
in the following way. In a system with one server and (k—1) queueing positions we have (k+1)
states (0,1,---,k). The balance equations for state probabilities py(:),i =0, 1, ... k=2,
yielding k—1 linear equations between the states {px(0),pr(1),...,pr(k—1)} can be set up
using Fry’s equations of state. But it is not possible to write down simple time-independent
equations for state k—1 and k. However, the first (k — 1) equations (13.41) together with the
normalisation requirement

> (i) =1 (13.63)

and the fact that the offered traffic equals the carried traffic plus the rejected traffic (PASTA

property):
A=1-pr(0)+ A pp(k) (13.64)

results in (k + 1) independent linear equations, which are easy to solve numerically. The two
approaches yields of course the same result. The first method is only valid for A < 1, whereas
the second is valid for any offered traffic.

Example 13.5.2: Leaky Bucket

Leaky Bucket is a mechanism for control of cell (packet) arrival processes from a user (source) in
an ATM-system. The mechanism corresponds to a queueing system with constant service time
(cell size) and a finite buffer. If the arrival process is a Poisson process, then we have an M/D/1/k
system. The size of the leak corresponds to the long-term average acceptable arrival intensity,
whereas the size of the bucket describes the excess (burst) allowed. The mechanism operates as a
virtual queueing system, where the cells either are accepted immediately or are rejected according
to the value of a counter which is the integral value of the load function (Fig. 13.2). In a contract
between the user and the network an agreement is made on the size of the leak and the size of the
bucket. On this basis the network is able to guarantee a certain grade-of-service. O

13.6 Single server queueing system: GI/G/1

In Sec. 13.3 we showed that the mean waiting time for all customers in queueing system
M/G/1 is given by Pollaczek-Khintchine’s formula:

A-s
W:m-e (13.65)
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where ¢ is the form factor of the holding time distribution.
We have earlier analysed the following cases:

M/M/1 (Sec. 12.2.4): ¢ = 2:

A-s
= Erl 1917. 13.
w -4 rlang 1917 (13.66)
M/D/1 (Sec. 13.5.3): ¢ = 1:
A-s
= — Erl 1909. 13.
W ST 4) rlang 1909 (13.67)

It shows that the more regular the holding time distribution, the less becomes the waiting
time traffic. (For loss systems with limited accessibility it is the opposite way: the bigger
form factor, the less congestion).

In systems with non-Poisson arrivals, moments of higher order will also influence the mean
waiting time.

13.6.1 General results

We have till now assumed that the arrival process is a Poisson process. For other arrival
processes it is seldom possible to find an exact expression for the mean waiting time except
in the case where the holding times are exponentially distributed. In general we may require,
that either the arrival process or the service process should be Markovian. Till now there is
no general accurate formulae for e.g. M/G/n.

For GI/G/1 it is possible to give theoretical upper limits for the mean waiting time. Denoting
the variance of the inter-arrival times by v, and the variance of the holding time distribution
by vg, Kingman'’s inequality (1961) gives an upper limit for the mean waiting time:

A-s Vg + Vg
GI/G/1: W < 20 = A) { 2 } ) (13.68)

This formula shows that it is the stochastic variations, that results in waiting times.

Formula (13.68) gives the upper theoretical boundary. A realistic estimate of the actual mean
waiting time is obtained by Marchal’s approximation (Marchal, 1976 [77]):

A-s Vg + Vg s+ vy
W = : : . 13.69
2(1—A) { 2 } {a2 + Vg ( )
where a is the mean inter-arrival time (A = s/a). The approximation is a scaling of Kingman’s
inequality so it agrees with the Pollaczek-Khintchine’s formula for the case M/G/1.
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13.6.2 State probabilities: GI/M/1

As an example of a non-Poisson arrival process we shall analyse the queueing system GI/M/1,
where the distribution of the inter-arrival times is a general distribution given by the density
function f(t). Service times are exponentially distributed with rate .

If the system is considered at an arbitrary point of time, then the state probabilities will not
be described by a Markov process, because the probability of an arrival will depend on the
time interval since the last arrival. The PASTA property is not valid.

However, if the system is considered immediately before (or after) an arrival epoch, then
there will be independence in the traffic process since the inter-arrival times are stochastic
independent the holding times are exponentially distributed. The arrival epochs are equilib-
rium points (regeneration points, Sec. 5.2.2); and we consider the so-called embedded Markov
chain.

The probability that we immediately before an arrival epoch observe the system in state j is
denoted by 7(j). In statistical equilibrium it can be shown that we will have the following

result (D.G. Kendall, 1953 [62]):
7(i) = (1 — a)a’, i=0,1,2,... (13.70)

where « is the positive real root satisfying the equation:

o= /OOO e M= £ (1) dt . (13.71)

The steady state probabilities can be obtained by considering two successive arrival epochs
t1 and ¢y (similar to Fry’s state equations, Sec. 13.5.5).

As the departure process is a Poisson process with the constant intensity p when there are
customers in the system, then the probability p(j) that j customers complete service between

two arrival epochs can be expressed by the number of events in a Poisson process during a
stochastic interval (the inter-arrival time). We can set up the following state equations:

mu(0) = om)- {1 - Zp(z')} ,

me(1) = Zm(j) p(j), (13.72)

T(i) = Zm(j)-p(j—m).
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The normalisation condition is as usual:

Zﬂtl(i) = Z%(j) —1. (13.73)

It can be shown that the above-mentioned geometric distribution is the only solution to this
system of equations (Kendall, 1953 [62]).

In principle, the queueing system GI/M/n can be solved in the same way. The state prob-
ability p(j) becomes more complicated since the departure rate depends on the number of
busy channels.

Notice that 7 (i) is not the probability of finding the system in state ¢ at an arbitrary point of
time (time average), but the probability of finding the system in state ¢ immediately before
an arrival (call average).

13.6.3 Characteristics of GI/M/1

The probability of immediate service becomes:
p{immediate} = 7(0) =1 — «. (13.74)
The corresponding probability of being delayed the becomes:
D = p{delay} = «. (13.75)

The average number of busy servers at a random point of time (time average) is equal to the
carried traffic (= the offered traffic A < 1).

The average number of waiting customers, immediately before the arrival of a customer, is
obtained via the state probabilities:

oo

L, = Z(1-a)o/'(z‘—1),

062

L, = . 13.
L= (13.76)

The average number of customers in the system before an arrival epoch is:

o0

Ly = Z(l—a)ai-i

=0

- . (13.77)
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The average waiting time for all customers then becomes:

(13.78)

The average queue length taken over the whole time axis (the virtual queue length) therefore
becomes (Little’s theorem):

o
L=A- ) 13.79
T (13.79)
The mean waiting time for the customers, who obtain waiting times, becomes
w
wo o= —
D Y
1 1
wo o= —- (13.80)
po1l—a

Example 13.6.1: Mean waiting times GI/M/1
For M/M/1 we find o = oy, = A. For D/M/1 @ = g is obtained from the equation:

—(l—ad)/A

Qg — e N

where g must be within (0,1). It can be shown that 0 < ag < ay, < 1. Thus the queueing system
D/M/1 will always have less mean waiting time than M/M /1.

For A = 0.5 erlang we find the following mean waiting times for all customers (13.78):

M/M/1:  «a=0.5, wW=1, w=2.
D/M/1: o = 0.2032, W = 0.2550, w = 1.3423.

where the mean holding time is used as the time unit (4 = 1). The mean waiting time is thus far
from proportional with the form factor of the distribution of the inter-arrival time. O

13.6.4 Waiting time distribution: GI/M/1, FCFS

When a customer arrives at the queueing system, the number of customers in the system
is geometric distributed, and the customer therefore, under the assumption that he gets a
positive waiting time, has to wait a geometrically distributed number of exponential phases.
This will result in an exponentially distributed waiting time with a parameter given in (13.80),
when the queueing discipline is FCFS (Sec. 12.4 and Fig. 4.9).
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13.7 Round Robin and Processor-Sharing

The Round Robin (RR) queueing model (Fig. 13.6) is a model for a time-sharing computer
system, where we wish a fast response time for the shortest jobs. This queueing discipline is
also called fair queueing because the available resources are equally distributed among the
jobs (customers) in the system.

Non-completed jobs

1=p
= T —{a)——
New jobs Queue CPU Completed jobs

Figure 13.6: Round robin queueing system. A task is allocated a time slice As (at most)
every time it is served. If the task is not finished during this time slice, it is returned to a
FCFS queue, where it waits on equal terms with new tasks. If we let As decrease to zero we
obtain the queueing discipline PS (Processor Sharing).

New jobs are placed in a FCFS—queue, where they wait until they obtain service within a
time slice (slot) As which is the same for all jobs. If a job does is not completed within a
time slice, the service is interrupted, and the job is placed at the end of the FCEFS—queue.
This continues until the required total service time is fulfilled.

We assume that the queue is unlimited, and that new jobs arrive according to a Poisson
process (A). The service time distribution can be general with the mean value s.

The time slice can vary. If it becomes infinite, all jobs will be completed the first time, and
we have simply an M/G/1 queueing system with FCFS discipline. If we let the time slice
decrease to zero, then we get the PS = Processor-Sharing model, which has a number of nice
analytical properties. The PS—was introduced by Kleinrock (1967) and is dealt with in detail
in (Kleinrock, 1976 [67]).

The Processor-Sharing model can be interpreted as a queueing system where all jobs are
served continuously by the server (time sharing). If there are i jobs in the system, each of
them obtain the fraction 1/i of the capacity of the computer. So there is no queue, and the
queueing discipline is meaningless.

When the offered traffic A = X - s is less than one, it can be shown that the steady state
probabilities are given by:

p(i) = (1—A)- A", i=0,1,..., (13.81)



282 CHAPTER 13. APPLIED QUEUEING THEORY

i.e. a geometric distribution with the mean value A/(1— A). The mean holding time (average
response time) for the jobs with duration ¢ becomes:

t
= —. 13.82
R, T (13.82)

If this job was alone in the system, then its holding time would be ¢. Since there is no queue,
we can then talk about an average delay for jobs with duration t:

Wt - Rt—t

A
= 5t (13.83)

The corresponding mean values for a random job naturally becomes:

= 13.84

A
W= s, (13.85)

This shows that we obtain exactly the same mean values as for M/M/1 (Sec. 12.2.4). But the
actual mean waiting time becomes proportional to the duration of the job, which is often a
desirable property. We don’t assume any knowledge in advance about the duration of the job.
The mean waiting time becomes proportional to the mean service time. The proportionality
should not be understood in the way that two jobs of the same duration have the same waiting
time; it is only valid on the average. In comparison with the results we have earlier obtained
for M/G/1 (Pollaczek-Khintchine’s formula (13.2)) the results may surprise the intuition.

A very useful property of the Processor-Sharing model is that the departure process is a
Poisson process as the arrival process (Sec. 14.2). It is intuitively explained by the fact that
the departure process is obtained from the arrival process by a stochastic shifting of the
individual arrival epochs. The time shift is equal to the response time with a mean value
given by (13.82) (Sec. 6.3.1, Palm’s theorem).

The Processor-Sharing model is very useful for analysing time-sharing systems and for mod-
elling queueing networks (Chap. 14).



Chapter 14

Networks of queues

Many systems can be modelled in such a way that a customer achieves services from several
successive nodes, i.e. once he has obtained service at one node, then he goes on to another
node. The total service demand is composed of service demands at several nodes. Hence,
the system is a network of queues, a queueing network where each individual queue is called
a node. Examples of queueing networks are telecommunication systems, computer systems,
packet switching networks, and FMS (Flexible Manufacturing Systems). In queueing net-
works we define the queue-length in a node as the total number of customers in the node,
including customers being served.

The aim of this chapter is to introduce the basic theory of queueing networks, illustrated by
applications. Usually, the theory is considered as being rather complicated, which is mainly
due to the complex notation. However, in this chapter we will give a simple introduction to
general analytical queueing network models based on product forms, the convolution algo-
rithm, the MVA-algorithm, and examples.

The theory of queueing networks is analogous to the theory of multi-dimensional loss systems
(Chap. 10 & 11). In Chap. 10 we considered multi-dimensional loss systems whereas in this
chapter we are looking at networks of queueing systems.

14.1 Introduction to queueing networks

Queueing networks are classified as closed and open queueing networks. In closed queueing
networks the number of customers is fixed whereas in open queueing networks the number of
customers is varying. In principle, an open network can be transformed into a closed network
by adding an extra node.
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Erlang’s classical waiting system, M/M /n, is an example of an open queueing system, whereas
Palm’s machine/repair model with S terminals is a closed network. If there is more than one
type of customers, the network can be a mixed closed and open network. Since the departure
process from one node is the arrival process at another node, we shall pay special attention
to the departure process, in particular when it can modelled as a Poisson process. This is
investigated in the section on symmetric queueing systems (Sec. 14.2).

The state of a queueing network is defined as the simultaneous distribution of number of
customers in each node. If K denotes the total number of nodes, then the state is described
by a vector p(iy, i, ...,ix) where i is the number of customers in node k (k =1,2,..., K).
Frequently, the state space is very large and it is difficult to calculate the state probabilities by
solving node balance equations. If every node is a symmetric queueing system, for example
a Jackson network (Sec. 14.3), then we will have product form. The state probabilities
of networks with product form can be aggregated and obtained by using the convolution
algorithm (Sec. 14.4.1) or the MVA-algorithm (Sec. 14.4.2).

Jackson networks can be generalised to BCMP-networks (Sec. 14.5), where there are N
types of customers. Customers of one specific type all belongs to a so-called chain. Fig. 14.1
illustrates an example of a queueing network with 4 chains. When the number of chains
increases the state space increases correspondingly, and only systems with a small number
of chains can be calculated exactly. In case of a multi-chain network, the state of each node
becomes multi-dimensional (Sec. 14.6). The product form between nodes is maintained, and
the convolution and the MVA-algorithm are applicable (Sec. 14.7). A number of approximate
algorithms for large networks can found in the literature.

P21

)\3%

w

A2 ~ P23

D24

N 4

Pa1

Figure 14.1: An example of a queueing network with four open chains.

14.2 Symmetric queueing systems

In order to analyse queueing systems, it is important to know when the departure process
of a queueing system is a Poisson process. Four queueing models are known to have this
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property:

1. M/M/n. This is Burke’s theorem (Burke, 1956 [12]), which states, that the departure
process of an M/M/n-system is a Poisson process. The state space probabilities are
given by (12.2):

Al 4
_‘p(o)a OSZSTL,
) 2!
=3 7 (14.1)
(—) - p(n), i>n.

where A = \/p.

2. M/G/o0. This corresponds to the Poisson case (Sec. 7.2). From Sec. 6.3 we know that
a random translation of the events of a Poisson process results in a new Poisson process.
This model is sometimes denoted as a system with the queueing discipline IS, Infinite
number of Servers. The state probabilities are given by the Poisson distribution (7.6):

pi)==-e4  i=01,2,.... (14.3)

3. M/G/1-PS. This is a single server queueing system with a general service time distri-
bution and processor sharing. The state probabilities are similar to the M/M/1 case
(13.81):

p(i)=(1—A)- A" i=0,1,2,.... (14.4)

4. M/G/1-LCFS-PR (PR = Preemptive Resume). This system also has the same state
space probabilities as M/M/1 (14.4).

In the theory of queueing networks usually only these four queueing disciplines are considered.
But for example also for Erlang’s loss system, the departure process will be a Poisson process,
if we include blocked customers.

The above-mentioned four queueing systems are called symmetric queueing systems as they
are symmetric in time. Both the arrival process and the departure process are Poisson
processes and the systems are reversible (Kelly, 1979 [60]). The process is called reversible
because it looks the same way when we reverse the time (cf. when a film is reversible it looks
the same whether we play it forward or backward). Apart from M/M/n these symmetric
queueing systems have the common feature that a customer is served immediately upon
arrival. In the following we mainly consider M/M/n nodes, but the M/M/1 model also
includes M/G/1-PS and M/G/1-LCFS-PR.
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14.3 Jackson’s theorem

In 1957, J.R. Jackson who was working with production planning and manufacturing systems,
published a paper with a theorem, now called Jackson’s theorem (1957 [16]). He showed that
a queueing network of M/M /n — nodes has product form. Knowing the fundamental theorem
of Burke (1956 [12]) Jackson’s result is obvious. Historically, the first paper on queueing
systems in series was by R.R.P. Jackson (1954 [15]).

Theorem 14.1 Jackson’s theorem: Consider an open queueing network with K nodes
satisfying the following conditions:

a) Each node is an M/M/n—queueing system. Node k has ny servers, and the average
service time is 1/ i,

b) Customers arrive from outside the system to node k according to a Poisson process with
intensity \,.. Customers may also arrive from other nodes to node k.

c) A customer, who has just finished his service at node j, immediately transfers to node
k with probability p;, or leaves the network with probability:

K
L= by
k=1

A customer may visit the same node several times if ppr > 0.

The average arrival intensity Ay at node k is obtained by looking at the flow balance equations:

K
Ap = A + ZAj * Dk - (14.5)
j=1
Let p(iy,is,...,ix) denote the state space probabilities under the assumption of statistical

equilibrium, i.e. the probability that there is ¢; customers at node k. Furthermore, we assume
that
Ay

223

Then the state space probabilities are given on product form:

p (i1, 2, ..., iKk) = Hpk (ix) - (14.7)

Here for node k, p(ix) is the state probabilities of an M/M/n queueing system with arrival
intensity Ay and service rate py, (14.1). The offered traffic Ay /py to node k must be less than
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the capacity ny of the node to enter statistical equilibrium (14.6). The key point of Jackson’s
theorem is that each node can be considered independently of all other nodes and that the
state probabilities are given by Erlang’s C—formula. This simplifies the calculation of the
state space probabilities significantly. The proof of the theorem was derived by Jackson in
1957 by showing that the solution satisfy the balance equations for statistical equilibrium.
Jackson’s first model thus only deals with open queueing networks.

In Jackson’s second model (Jackson, 1963 [17]) the arrival intensity from outside:
K
A=)\ (14.8)
j=1

may depend on the current number of customers in the network. Furthermore, u; can depend
on the number of customers at node k. In this way, we can model queueing networks which
are either closed, open, or mixed. In all three cases, the state probabilities have product
form.

The model by Gordon & Newell (1967 [31]), which is often cited in the literature, can be
treated as a special case of Jackson’s second model.

)\7 -
—— [ 11| p~(»)

Figure 14.2: State transition diagram of an open queueing network consisting of two M/M /1—
systems in series.

Example 14.3.1: Two M/M/1 nodes in series
Fig. 14.2 shows an open queueing network of two M/M/1 nodes in series. The corresponding state
transition diagram is given in Fig. 14.3. Clearly, the state transition diagram is not reversible:
(between two neighbour states there is only flow in one direction, (cf. Sec. 10.2) and apparently
there is no product form. If we solve the balance equations to obtain the state probabilities we find
that the solution can be written on a product form:

p(i,j) = p@)-pQ),

pli) = {(1-A)-Ai}-{(1- A 43},

where A1 = A/py and As = A/ua. The state probabilities can be expressed in a product form
p(i,7) = p(i) - p(j), where p(i) is the state probabilities for a M /M /1 system with offered traffic A;
and p(j) is the state probabilities for a M /M /1 system with offered traffic A;. The state probabilities
of Fig. 14.3 are identical to those of Fig. 14.4, which has local balance and product form. Thus
it is possible to find a system which is reversible and has the same state probabilities as the non-
reversible system. There is regional but not local balance in Fig. 14.3. If we consider a square of
four states, then to the outside world there will be balance, but internally there will be circulation
via the diagonal state shift. O
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In queueing networks customers will often be looping, so that a customer may visit the same
node several times. If we have a queueing network with looping customers, where the nodes
are M /M /n-systems, then the arrival processes to the individual nodes are no more Poisson
processes. Anyway, we may calculate the state probabilities as if the individual nodes are
independent M/M/n systems. This is explained in the following example.

Example 14.3.2: Networks with feed back

Feedback is introduced in Example 14.3.1 by letting a customer, which has just ended its service
at node 2, return to node 1 with probability ps;. With probability 1 — po; the customer leaves the
system. The flow balance equations (14.5) gives the total arrival intensity to each node and pa;
must be chosen such that both Ay/u; and Ag/u9 are less than one. Letting A\; — 0 and pa; — 1 we
realise that the arrival processes are not Poisson processes: only rarely a new customer will arrive,
but once he has entered the system he will circulate for a relatively long time. The number of
circulations will be geometrically distributed and the inter-arrival time is the sum of the two service
times. L.e. when there is one (or more) customers in the system, then the arrival rate to each node
will be relatively high, whereas the rate will be very low if there is no customers in the system. The
arrival process will be bursty.

The situation is similar to the decomposition of an exponential distribution into a weighted sum of
Erlang-k distributions, with geometrical weight factors (Sec. 4.4). Instead of considering a single
exponential inter-arrival distribution we can decompose this into k phases (Fig. 4.9) and consider
each phase as an arrival. Hence, the arrival process has been transformed from a Poisson process to
a process with bursty arrivals. O

Figure 14.3: State transition diagram for the open queueing network shown in Fig. 14.2. The
diagram is non-reversible.
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Figure 14.4: State transition diagram for two independent M /M /1-queueing systems with
identical arrival intensity, but individual mean service times. The diagram is reversible.

14.3.1 Kleinrock’s independence assumption

If we consider a real-life data network, then the packets will have the same constant length,
and therefore the same service time on all links and nodes of equal speed. The theory of
queueing networks assumes that a packet (a customer) samples a new service time in every
node. This is a necessary assumption for the product form. This assumption was first
investigated by Kleinrock (1964 [65]), and it turns out to be a good approximation in praxis.

14.4 Single chain queueing networks

We are interested in the state probabilities defined by p(iq, s, ..., 0k, ..., ix), where iy is the
number of customers in node k (1 < k < K).

Dealing with open systems is easy. First we solve the flow balance equation (14.5) and obtain
the aggregated arrival intensity to each node (Ay). Combining the arrival intensities with
the service time distribution (uy) we get the offered traffic Ay at each node and then by
considering Erlang’s delay system we get the state probabilities for each node.
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14.4.1 Convolution algorithm for a closed queueing network

Dealing with closed queueing networks is much more complicated. We only know the relative
load at each node, not the absolute load, i.e. ¢ - A; is obtained, but ¢ is unknown. We
can obtain the unnormalised relative state probabilities. Finally, by normalising we get the
normalised state probabilities. Unfortunately, the normalisation implies that we must sum
up all state probabilities, i.e. we must calculate each (unnormalised) state probability. The
number of states increases rapidly when the number of nodes and/or customers increases. In
general, it is only possible to deal with small systems. The complexity is similar to that of
multi dimensional loss systems (Chapter 10).

We will now show how the convolution algorithm can be applied to queueing networks.
The algorithm corresponds to the convolution algorithm for loss systems (Chapter 10). We
consider a queueing network with K nodes and a single chain with S customers. We assume
that the queueing systems in each node are symmetric (Sec. 14.2). The algorithm has three
steps:

e Step 1. Let the arrival intensity to an arbitrary chosen reference node i be equal to
some value A;. By solving the flow balance equation (14.5) for the closed network we
obtain the relative arrival rates A, (1 < k < K) to all nodes. Finally, we have the
relative offered traffic values o = Ag/pi. Often we choose the above arrival intensity
of the reference node so that the offered traffic to this node becomes one.

e Step 2. Consider each node as if it is isolated and has the offered traffic oy, (1 < k < K).
Depending on the actual symmetric queueing system at node k, we derive the relative
state probabilities g (i) at node k. The state space will be limited by the total number
of customers S, ie. 0<i<S6S.

e Step 3. Convolve the state probabilities for each node recursively. For example, for the
first two nodes we have:

G2 = q1 % g2, (14.9)

where '
qlz(i)Zqu(x)-qQ(i—x), i=0,1,...,5.
=0
When all nodes have been convolved we get:

G12,..Kk = q1,2,..,K-1 * K - (14.10)

Since the total number of customers is fixed (S) only state g12. x(S) exists in the
aggregated system and therefore this macro-state must have the probability one. We
can then normalise all micro-state probabilities.

When we perform the last convolution we can derive the performance measures for
the last node. By changing the order of convolution of the nodes we can obtain the
performance measures of all nodes.
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O
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Node 1 Node 2

Figure 14.5: The machine/repair model as a closed queueing networks with two nodes. The
terminals correspond to one IS-node, because the tasks always find an idle terminal, whereas
the CPU corresponds to an M/M/l-node.

Example 14.4.1: Palm’s machine/repair model

We now consider the machine/repair model of Palm introduced in Sec. 12.5 as a closed queueing
network (Fig. 14.5). There are S customers and terminals. The mean thinking time is ,ul_l and
the mean service time at the CPU is pugy ! In queueing network terminology there are two nodes:
node one is the terminals, i.e. an M/G/0co (actually it is an M/G/S system, but since the number
of customers is limited to S it corresponds to an M/G/co system), and node two is the CPU, i.e.
an M/M/1 system with service intensity ps.

The flows to the nodes are equal (A; = As = A) and the relative load at node 1 and node 2 are

a1 =A/py and ag = A/ g,

respectively. If we consider each node in isolation we obtain the state probabilities of each node,
¢1(%) and ¢2(j), and by convolving ¢1(7) and ¢2(j) we get gi2(z), (0 < z < S), as shown in Table 14.1.
The last term with S customers (an unnormalised probability) ¢i2(S) is compounded of:

S S—1 5—2 04% Oéf
q12(5)2a2-1—|—a2_ coq 4 ay .§+...+1.§‘

A simple rearranging yields:

2 S

e @ Y

Y= {14+ 84+ % 4. 2
q12(5) a2{+1+2!+ +S!}’

where
a_ H2

85 M1
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State Node 1 Node 2 Queueing network
i q1(4) q2(1) G2 = q1 % G2
0 1 1 1
1 aq o7 aq + Qo
Oé2 042
2 2—'1 o? a3+ ay - ag + 2—|1
a .
l 2_'1 %
s
(6]
S ?11 ol q12(5)

Table 14.1: The convolution algorithm applied to Palm’s machine/repair model. Node 1 is
an IS-system, and node two is an M/M/1-system (Example 14.4.1).

The probability that all terminals are “thinking” is identified as the last term (normalised by the
sum) (S terminals in node 1, zero terminals in node 2):

o
|
0 Sé;3 o5 =E1s(0)

which is Erlang’s B-formula. Thus the result is in agreement with the result obtained in Sec. 12.5.
We notice that A appears with the same power in all terms of ¢; 2(S) and thus corresponds to a
constant which disappears when we normalise. O

Example 14.4.2: Central server system

In 1971 J. P. Buzen introduced the central server model illustrated in Fig. 14.6 to model a multi-
programmed computer system with one CPU and a number of input/output channels (peripheral
units). The degree of multi-programming S describes the number of jobs processed simultaneously.
The number of peripheral units is denoted by K —1 as shown in Fig. 14.6, which also shows the
transition probabilities.

Typically a job requires service hundreds of times, either by the central unit or by one of the
peripherals. We assume that once a job is finished it is immediately replaced by another job, hence
S is constant. The service times are all exponentially distributed with intensity p; (i = 1,..., K).
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Figure 14.6: Central server queueing system consisting of one central server (CPU) and (K—1)
I/O—channels. A fixed number of tasks S are circulating in the system.

Buzen drew up a scheme to evaluate this system. The scheme is a special case of the convolution
algorithm. Let us illustrate it by a case with S = 4 customers and K = 3 nodes and:

1 1 1
M1 = 287 M2_407 ”3_280’
P11 = 0.1, P12 = 0.7, P13 = 0.2.
The relative loads become:
a; =1, as =1, ag = 2.

If we apply the convolution algorithm we obtain the results shown in Table 14.2. The term gi23(4)
is made up by:

q123(4) = 1-164+2-843-444-245.1="57.

Node 3 serves customers in all states except for state g3(0) - g12(4) = 5. The utilisation of node 3 is
therefore a3 = 52/57. Based on the relative loads we now obtain the exact loads:

26 26 02

a1:§7 a2:§7 agzﬁ.
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State Node 1 Node 2 Node 1*2 Node 3 Queueing network
i q1(7) q2(7) Q2 = q1 % G2 a3 G123 = (q1 * ¢2) * g3
0 1 1 1 1 1
1 1 1 2 2 4
2 1 1 3 4 11
3 1 1 4 8 26
4 1 1 5 16 57

Table 14.2: The convolution algorithm applied to the central server system.

The average number of customers at node 3 is:

Ly = {1-(4-2)+2-(3-4)+3-(2-8)+4-(1-16)} /57,
L =

By changing the order of convolution we get the average queue lengths Ly and Lo and ends up with:

42 42 144
oy L2 - =5 3= =5 -
o7 57
The sum of all average queue lengths is of course equal to the number of customers S. Notice, that
in queueing networks we define the queue length as the total number of customers in the node,

including customers being served. From the utilisation and mean service time we find the average
number of customers finishing service per time unit at each node:

26 1 26 1 52 1

Er e MTara M T w0

Applying Little’s result we finally obtain the mean sojourn time Wy, = Ly /\x:

Wy =4523, Wy =64.62, W;=T775.38.

14.4.2 The MVA-algorithm

The Mean Value Algorithm (MVA) is an algorithm to calculate performance measures of
queueing networks. It combines in an elegant way two main results in queueing theory: the
arrival theorem (8.27) and Little’s law (5.20). The algorithm was first published by Lavenberg
& Reiser (1980 [72]).
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We consider a queueing network with K nodes and S customers (all belonging to a single
chain). The relative loads of the nodes are denoted by ay, (kK = 1,2,..., K). The algorithm
is recursively in the number of customers, i.e. a network with x + 1 customers is evaluated
from a network with = customers.

Assume that the average number of customers at node k is Ly (x) where x is the total number
of customers in the network. Obviously

> Li(x) == (14.11)

k=1

The algorithm goes recursively in two steps:

Step 1:

Increase the number of customers from x to (z + 1). According to the arrival theorem,
the (z + 1)th customer will see the system as a system with = customers in statistically
equilibrium. Hence, the average sojourn time (waiting time + service time) at node k is:

e For M/M/1, M/G/1-PS, and M/G/1-LCFS-PR:

Wiz +1) ={Li(z) + 1} - s

e For M/G/oc:

where s is the average service time in node k which has n, servers. As we only calculate
mean waiting times, we may assume FCFS queueing discipline.

Step 2:
We apply Little’s law (L = A - W), which is valid for all systems in statistical equilibrium.

For node k£ we have:

where )\, is the relative arrival rate to node k. The normalising constant c¢ is obtained from
the total number of customers::

[M] =

Li(z+1)=x+1. (14.12)
k=1

By these two steps we have performed the recursion from z to (x 4+ 1) customers. For x = 1
there will be no waiting time in the system and Wy (1) equals the average service time s.

The MVA-algorithm is below shown for a single server nodes, but it is fairly easy to generalise
to nodes with either multiple servers or even infinite server discipline.
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Example 14.4.3: Central server model
We apply the MVA-algorithm to the central server model (Example 14.4.2). The relative arrival
rates are:

M=1, A=07, A3=02.

Node 1 Node 2 Node 3
S=1|WQ1Q) = 28 | Wh(l) = 40 | W3(1) = 280
Li(1) = c-1-28| Ly(1) = c-0.7-40 | Ls(1) = c-0.2-280
Li(1) = 0.25 | Ly(1) = 0.25 | L3(1) = 0.50
S=2|W(2) = 1.25-28 | Wh(2) = 1.25-40 | W3(2) = 1.50 - 280
Li(2) = c-1-125-28 | Lo(2) = c-0.7-1.25-40 | L3(2) = c-0.2-1.50-280
Li(2) = 0.4545 | Ly(2) = 0.4545 | L3(2) = 1.0909
S=3|W(3) = 1.4545 - 28 | W(3) = 1.4545-40 | W3(3) = 2.0909 - 280
Li(3) = ¢-1-1.4545-28 | Lo(3) = ¢-0.7-1.4545-40 | L3(3) = c¢-0.2-2.0909 - 280
Li(3) = 0.6154 | Ly(3) = 0.6154 | L3(3) = 1.7692
S=4|W4) = 1.6154 - 28 | Wh(4) = 1.6154 - 40 | W3(4) = 2.7692 - 280
Li(4) = ¢-1-1.6154-28 | Ly(4) = ¢-0.7-1.6154-40 | L3(4) = ¢-0.2-2.7692 280
Li(4) 0.7368 | La(4) = 0.7368 | L3(4) = 2.5263

Naturally, the result is identical to the one obtained with the convolution algorithm. The sojourn
time at each node (using the original time unit):

Wi(4) = 1.6154-28 = 45.23,

Wh(4) = 1.6154-40 = 64.62,

Ws(4) = 2.7693-280 = 775.38.

O

Example 14.4.4: MVA-algorithm applied to the machine/repair model
We consider the machine/repair model with S sources, terminal thinking time A and CPU-service
time equal to one time unit. As mentioned in Sec. 12.5.2 this is equivalent to Erlang’s loss system
with S servers and offered traffic A. It is also a closed queueing network with two nodes and S
customers in one chain. If we apply the MVA-algorithm to this system, then we get the recursion
formula for the Erlang-B formula (7.29). The relative visiting rates are identical, as a customer
alternatively visits node one and two: Ay = Ao = 1.

Node 1 Node 2
S=1|Wi(1) = A|Wa(1) = 1
Li(1) = c-1-A|L(1) = c-1-1
L) = [ L) = e}
S=2|W(2) = A Wa(2) = L+ 3
Li(2) = c1-A|Ly2) = c-1-(1+ 1)
L(2) = ALy | 1h2) = 2-A- bl
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We know that the queue-length at the terminals (node 1) is equal to the carried traffic in the equiv-
alent Erlang—B system and that all other customers stay in the CPU (node 2). We thus have in
general:

Node 1 Node 2
S=ux|Wi(z) = A Wa(z) = 1+ Loz — 1)
Li(z) = c-A|Lyw) = e {1+ Loz —1)}
Li(e) = A-{1-E(A)}|La(a) = a—A-{1-E,(A)}

From this we have the normalisation constant ¢ = 1 — E,(A) and find for the (x+1)’th customer:

Li(x+ 1)+ La(x+1) = c-A+c-{1+ La(x)}

— c.A+c~{1+I—A‘(1—Ez)}

= z+1,
A-FE,
E A
z+1 I+ 1 + A EQ: ’
because we know ¢ =1 — E,1. This is just the recursion formula for the Erlang—B formula. O

14.5 BCMP queueing networks

In 1975 the second model of Jackson was further generalised by Baskett, Chandy, Muntz
and Palacios (1975 [1]). They showed that queueing networks with more than one type of
customers also have product form, provided that:

a) Each node is a symmetric queueing system (cf. Sec. 14.2: Poisson arrival process =
Poisson departure process).

b) The customers are classified into N chains. Each chain is characterised by its own mean
service time s; and transition probabilities p;;. Furthermore, a customer may change
from one chain to another chain with a certain probability after finishing service at a
node. A restriction applies if the queueing discipline at a node is M/M/n (including
M/M/1): the average service time must be identical for all chains in a node.

BCMP-networks can be evaluated with the multi-dimensional convolution algorithm and the
multidimensional MVA algorithm.
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Mixed queueing networks (open & closed) are calculated by first calculating the traffic load in
each node from the open chains. This traffic must be carried to enter statistical equilibrium.
The capacity of the nodes are reduced by this traffic, and the closed queueing network is
calculated by the reduced capacity. So the main problem is to calculate closed networks.
For this we have more algorithms among which the most important ones are convolution
algorithm and the MVA (Mean Value Algorithm) algorithm.

14.6 Multidimensional queueing networks

In this section we consider queueing networks with more than one type of customers. Cus-
tomers of same type belong to a specific class or chain. In Chap. 10 we considered loss
systems with several types of customers (services) and noticed that the product form was
maintained and that the convolution algorithm could be applied.

14.6.1 M/M/1 single server queueing system

Al > ‘ ‘ ‘ A =M/

He Ay = )\2/M2

o —> | | |

Figure 14.7: An M /M /1-queueing system with two types (chains) of customers.

Fig. 14.7 illustrates a single server queueing system with N = 2 types of customers (chains).
Customers arrive to the system according to a Poisson arrival process with intensity A;
( = 1,2). State (,7) is defined as a state with i type 1 customers and j type 2 customers.
The service intensity p;; in state (i,7) can be chosen such that it is state dependent, for
example:

1

Mij_m'ﬂl+i+j‘
The service rates can be interpreted in several ways corresponding to the symmetric single
server queueing system. One interpretation corresponds to processor sharing, i.e. all (i + j)
customers share the server and the capacity of the server is constant. The state dependency
is due to the difference in service rates between the two types of customers; i.e. the number
of customers terminated per time unit depends on the types of customers currently being
served.

2 -

Another interpretation corresponds to an M/M/1 system. If we assume py = o, then it
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Figure 14.8: State transition diagram for a multi-dimensional M /M /1-system with processor
sharing.

can be shown that the customer being served is with probability i/(i+j) type 1, and with
probability j/(i+7) type 2. This is independent of the service discipline.

Part of the state transition diagram is given by Fig. 14.8. The diagram is reversible, since

the flow clockwise equals the flow counter-clockwise. Hence, there is local balance and all
state probabilities can be expressed by p(0,0):

AL A
p(ij) == - j—f (i +5)! - p(0,0). (14.13)

By normalisation we get p(0,0):

In comparison with the multidimensional Erlang—B formula we now have the additional factor
(+7)!. The product form between chains (inside a node) is lost, but the product form between
nodes will still be maintained.

If there are N different types of customers (chains) the state probabilities for a single node
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becomes:

-p(0) . (14.14)

This can be expressed by the polynomial distribution (4.37):
Ay i iyt

) = A7 - T T ) p(0). 14.15

() {H } () s (14.15)

For an unlimited number of queueing positions the state probabilities of the total number of
customers are:

p(j) =plir +iz + - +in =j}.

If 1; = p, then the system is identical to an M/M/1 System with arrival rate A = ). \;:

p(j) = (A1 +Ay+---+ An)? - p(0)

= A.(1-A).

The Binomial expansion is used to obtain this result. The state transition diagram in Fig. 14.8
can also be interpreted as the state transition diagram of an M/G/1-LCFS-PR (preemptive
resume) system. It is obvious that M/G/1-LCFS-PR is reversible because the process follows
exactly the same path in the state transition diagram away from state zero as back to state
Z€ero.

The state transition diagram can be shown to be insensitive to the service time distribution
so that it is valid for M/G/1 queueing system. Fig. 14.8 corresponds to a state transition
diagram for a single server queueing system with hyper—exponentially distributed service

times (cf. (10.7)), e.g. M/H5/1-LCFS—-PR or PS.

Notice, that for M/M/1 (FCFS, LCFS, SIRO) it is necessary to assume that all customers
have the same mean service time, which must be exponentially distributed. Other ways, the
customer being served will not be a random customer among the (i + j) customers in the
system.

In conclusion, single server queueing systems with more types of customers will only have
product form when the node is a symmetric queueing system: M/G/1-PS, M/G/1-LCFS-
PR, or M/M/1 with same service time for all customers.
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14.6.2 M/M/n queueing system

We may also carry through the above for a system with n servers. For (i 4+ j) < n we
get the same relative state probabilities as for the multi—-dimensional Erlang-B formula. For
(14 j) > n we only get a simple interpretation when p; = p, i.e. when all types (chains) of
customers have the same mean holding time. We then find the state probabilities given in
(10.9), and the system has product form. M/M /oo may be considered as a special case of
M/M/n and has already been dealt with in connection with loss systems (Chap. 12).

14.7 Closed queueing networks with multiple chains

Dealing with queueing networks having multiple chains is analogous to the case with a single
chain. The only difference is that the classical formulee and algorithms are replaced by the
corresponding multi-dimensional formulee.

14.7.1 Convolution algorithm
The algorithm is essentially the same as in the single chain case:

e Step 1. Consider each chain as if it is alone in the network. Find the relative load at
each node by solving the flow balance equation (14.5). At an arbitrary reference node
we assume that the load is equal to one. For each chain we may choose a different node
as reference node. For chain j in node k the relative arrival intensity )\i is obtained
from (we use the upper index to denote the chain):

K
No=>p- X, j=1..N, (14.16)
i=1

where:

K = number of nodes,
N = number of chains,

ka = the probability that a customer of chain 7 jumps from node i to node k.

We choose an arbitrary node as reference node, e.g. node 1, i.e. )\{ = 1. The relative
load at node k due to customers of chain j is then:

VY B
a, = Ay, - Sy

where s, = is the mean service time at node k for customers of chain j. Note, j is an
index not a power.
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e Step 2. Based on the relative loads found in step 1, we obtain the multi-dimensional
state probabilities for each node. Each node is considered in isolation and we truncate
the state space according to the number of customers in each chain. For example for
node k (1 <k < K):

Bk:pk(il,ig,...,i]v), OSZJSSJ, j:1,2,...N,
where S; is the number of customers in chain j.

e Step 3. In order to find the state probabilities of the total network, the state proba-
bilities of each node are convolved together similar to the single chain case. The only
difference is that the convolution is multi-dimensional. When we perform the last con-
volution we may obtain the performance measures of the last node. Again, by changing
the order of nodes, we can obtain the performance measures of all nodes.

The total number of states increases rapidly. For example, if chain j has S; customers, then
the total number of states in each node becomes:

N

[Ies+1).

j=1
The number of ways N chains with .S; customers in chain j can be distributed in a queueing
network with K nodes is:

N
c=]Jc(s; k) (14.17)
=1
where k; (1 < k; < k) is the number of nodes visited by chain j and:
o Si+ki -1\ [ Sij+ki—1
sy = (ST - (B, s

The algorithm is best illustrated with an example.

Example 14.7.1: Palm’s machine-repair model with two types of customers

As seen in Example 14.4.1, this system can be modelled as a queueing network with two nodes.
Node 1 corresponds to the terminals (machines) while node 2 is the CPU (repair man). Node 2
is a single server system whereas node 1 is modelled as a Infinite Server system. The number of
customers in the chains are (S; = 2, S = 3) and the mean service time in node k is 5. The relative
load of chain 1 is denoted by «; in node 1 and by as in node 2. Similarly, the load af chain 2 is
denoted by (1, respectively G2. Applying the convolution algorithm yields:

e Step 1.
Chain 1: S1 = 2 customers
Relative load: a3 = A1 - s% , ag =M\ -sh .
Chain 2: S9 = 3 customers

Relative load: (31 = Ag - s% , Bo = Ao - s% .
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e Step 2.
For node 1 (IS) the relative state probabilities are (cf. 10.9):

2

@ (0,0)= 1 0(0,2)= =
aq - %

@(1,0) = o a(l,2) = 5
2 2 92
_oo _ o fi

Q1(270) - 2 Q1(272) - 4

3

@(0,1)= 3 q1(0,3) = Fl
o - B3
a(l,l)= or-p n(1,3) = .
2 2 13
ai - B ai - By

QI( 5 ) 2 QI( 73) 12

For node 2 (single server) (cf. 14.14) we get:

32(0,0) = 1 02(0,2) = B3
32(1,0) = ©(1,2) = 3-az- 33
©(2,0) = o} ©(2,2) = 6-a3 53
q2(0,1) = 2 ¢(0,3) = 3
@(l,1)= 2-az- B ©(1,3) = 4-a2- 3
©(2,1) = 3-a3- 5 ¢2(2,3) = 10-a3- 3

e Step 3.
Next we convolve the two nodes. We know that the total number of customers are (2, 3), i.e.
we are only interested in state (2, 3):

712(2,3) = q1(0,0) - ¢2(2,3) + ¢1(1,0) - g2(1,3)
+q1(2,0) - ¢2(0,3) + q1(0,1) - ¢2(2,2)
+q(1,1)-q2(1,2) + ¢1(2,1) - 2(0,2)
+q1(0,2) - ¢2(2,1) + q1(1,2) - 2(1, 1)
+q1(2,2) - q2(0,1) + 1(0,3) - ¢2(2,0)

+ QI(L 3) ' QQ(17O) + QI(27 3) ’ QQ(Oa 0)
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Using the actual values yields:

q12(2,3) =+ 1-10-a3- 3 + a1-4-ay- 53
04% 3 2 2
+ 7/62 + p1-6-a5- 5
2
a .
+ a1-f1-3-02-05 + lTﬂlﬁg
2 92
+ =305 + B 90y
2 2
2 2 3
oy - B
+ 14 1'52 + gla%
041'5% 04%'5%
et e 1
+ 6 o + 9

Note that «; and a9 together (chain 1) always appears in the second power whereas 1 and [
(chain 2) appears in the third power corresponding to the number of customers in each chain.
Because of this, only the relative loads are relevant, and the absolute probabilities are obtain by
normalisation by dividing all the terms by ¢12(2, 3). The detailed state probabilities are now easy to
obtain. Only in the state with the term (a2 - 37)/12 is the CPU (repair man) idle. If the two types
of customers are identical the model simplifies to Palm’s machine/repair model with 5 terminals.
In this case we have:

1. 2. 33
Bypz) = 21 L or
7 712(2,3)
Choosing oy = 81 = a and ag = B2 = 1, yields:
-oi-A o /12
712(2,3) 10+ 4o+ 302+ 6a+ 302 + Lad + 302 + a® + ot + Lad + tat + £ab
N
— 5!
: 2 3 A
+ o+ ? + ? + j + g
i.e. the Erlang—B formula as expected. O

14.8 Other algorithms for queueing networks

Also the MVA—-algorithm is applicable to queueing networks with more chains, but it will
not be described here. During the last decade several algorithms have been published. An
overview can be found in (Conway & Georganas, 1989 [15]). In general, exact algorithms
are not applicable for bigger networks. Therefore, many approximative algorithms have been
developed to deal with queueing networks of realistic size.
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14.9 Complexity

Queueing networks has the same complexity as circuit switched networks with direct routing
(Sec. 11.5 and Tab. 11.2). The state space of the network shown in Tab. 14.3 has the following

number of states for every node:
N

[Ics:+1). (14.19)

1=0

The worst case is when every chain consists of one customer. Then the number of states
becomes 2° where S is the number of customers.

Node Population
Chain )
1 2 . K Size
1 a1 a9 s 672¢! Sl
2 Qg Qo (KD Sy
N |ouny oy -+ agn SN

Table 14.3: The parameters of a queueing network with N chains, K nodes and ), S;
customers. The parameter «;, denotes the load from customers of chain j in node k
(cf. Tab. 11.2).

14.10 Optimal capacity allocation

We now consider a data transmission system with K nodes, which are independent single
server queueing systems M/M /1 (Erlang’s delay system with one server). The arrival process
to node k is a Poisson process with intensity A, messages (customers) per time unit, and the
message size is exponentially distributed with mean value 1/ [bits]. The capacity of node
k is ¢y [bits per time unit]. The mean service time becomes:

1 1
Szﬂ__

Pk Kk Pk .

So the mean service rate is py 5 and the mean sojourn time is given by (12.34):

1
miy=——-—.
! i Pk — Ak
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We introduce the following linear restriction on the total capacity:
K
F=> ¢. (14.20)
k=1

For every allocation of capacity which satisfies (14.20), we have the following mean sojourn
time for all messages (call average):

KA 1
k
m=y .- 14.21
! kz:; A PR — A ( )
where:
K
A=) M (14.22)
k=1

K
1 A 1
—=3 2= (14.23)
o= A
The total offered traffic is then: \
= — . (14.24)
p- F

Kleinrock’s law for optimal capacity allocation (Kleinrock, 1964 [65]) reads:

Theorem 14.2 Kleinrock’s square root law: The optimal allocation of capacity which
minimises my (and thus the total number of messages in all nodes) is:

_ M 1 V AR/t
or= F-(1 A)—Zfil Newmk (14.25)

under the condition that:

F>>y = (14.26)

Proof: This can be shown by introducing Lagrange multiplier ¥ and consider:

G—ml—ﬁ{icpk—ﬁ’}. (14.27)

Minimum of G is obtained by choosing ¢ as given in (14.25).

With this optimal allocation we find the mean sojourn time:

(S8 V)

S F A7 (14.28)

my =
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This optimal allocation corresponds to that all nodes first are allocated the necessary mini-
mum capacity A;/p;. The remaining capacity (14.23):

K
Ai
F—Z;:F-(l—A) (14.29)
k=1 """

is allocated among the nodes proportional the square root of the average flow Ay /.

If all messages have the same mean value (ux = i), then we may consider different costs in
the nodes under the restriction that a fixed amount is available (Kleinrock, 1964 [65]).
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Chapter 15

Traflic measurements

Traffic measurements are carried out in order to obtain quantitative information about the
load on a system to be able to dimension the system. By traffic measurements we understand
any kind of collection of data on the traffic loading a system. The system considered may be
a physical system, for instance a computer, a telephone system, or the central laboratory of a
hospital. It may also be a fictitious system. The collection of data in a computer simulation
model corresponds to a traffic measurements. Billing of telephone calls also corresponds to a
traffic measurement where the measuring unit used is an amount of money.

The extension and type of measurements and the parameters (traffic characteristics) measured
must in each case be chosen in agreement with the demands, and in such a way that a
minimum of technical and administrative efforts result in a maximum of information and
benefit. According to the nature of traffic a measurement during a limited time interval
corresponds to a registration of a certain realisation of the traffic process. A measurement is
thus a sample of one or more random variables. By repeating the measurement we usually
obtain a different value, and in general we are only able to state that the unknown parameter
(the population parameter, for example the mean value of the carried traffic) with a certain
probability is within a certain interval, the confidence interval. The full information is equal
to the distribution function of the parameter. For practical purposes it is in general sufficient
to know the mean value and the variance, i.e. the distribution itself is of minor importance.

In this chapter we shall focus upon the statistical foundation for estimating the reliability of a
measurement, and only to a limited extent consider the technical background. As mentioned
above the theory is also applicable to stochastic computer simulation models.
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15.1 Measuring principles and methods

The technical possibilities for measuring are decisive for what is measured and how the mea-
surements are carried out. The first program controlled measuring equipment was developed
at the Technical University of Denmark, and described in (Andersen & Hansen & Iversen,
1971 [2]). Any traffic measurement upon a traffic process, which is discrete in state and con-
tinuous in time can in principle be implemented by combining two fundamental operations:

1. Number of events: this may for example be the number of errors, number of call
attempts, number of errors in a program, number of jobs to a computing centre, etc.
(cf. number representation, Sec. 5.1.1 ).

2. Time intervals: examples are conversation times, execution times of jobs in a computer,
waiting times, etc. (cf. interval representation, Sec. 5.1.2).

By combining these two operations we may obtain any characteristic of a traffic process.
The most important characteristic is the (carried) traffic volume, i.e. the summation of all
(number) holding times (interval) within a given measuring period.

From a functional point of view all traffic measuring methods can be divided into the following
two classes:

1. Continuous measuring methods.

2. Discrete measuring methods.

15.1.1 Continuous measurements

In this case the measuring point is active and it activates the measuring equipment at the
instant of the event. Even if the measuring method is continuous the result may be discrete.

Example 15.1.1: Measuring equipment: continuous time
Examples of equipment operating according to the continuous principle are:

(a) Electro-mechanical counters which are increased by one at the instant of an event.
(b) Recording x—y plotters connected to a point which is active during a connection.

(¢) Ampere-hour meters, which integrate the power consumption during a measuring period.
When applied for traffic volume measurements in old electro-mechanical exchanges every trunk
is connected through a resistor of 9,6 k{2, which during occupation is connected between —48
volts and ground and thus consumes 5 mA.

(d) Water meters which measure the water consumption of a household.
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15.1.2 Discrete measurements

In this case the measuring point is passive, and the measuring equipment must itself test
(poll) whether there have been changes at the measuring points (normally binary, on-off).
This method is called the scanning method and the scanning is usually done at regular instants
(constant = deterministic time intervals). All events which have taken place between two
consecutive scanning instants are from a time point of view referred to the latter scanning
instant, and are considered as taking place at this instant.

Example 15.1.2: Measuring equipment: discrete time
Examples of equipment operating according to the discrete time principle are:

(a) Call charging according to the Karlsson principle, where charging pulses are issued at regular
time instants (distance depends upon the cost per time unit) to the meter of the subscriber,
who has initiated the call. Each unit (step) corresponds to a certain amount of money. If we
measure the duration of a call by its cost, then we observe a discrete distribution (0,1,2,...
units). The method is named after S.A. Karlsson from Finland (Karlsson, 1937 [57]). In
comparison with most other methods it requires a minimum of administration.

(b) The carried traffic on a trunk group of an electro-mechanical exchange is in practice measured
according to the scanning principle. During one hour we observe the number of busy trunks
100 times (every 36 seconds) and add these numbers on a mechanical counter, which thus
indicate the average carried traffic with two decimals. By also counting the number of calls
we can estimate the average holding time.

(¢c) The scanning principle is particularly appropriate for implementation in digital systems. For
example, the processor controlled equipment developed at DT'U, Technical University of Den-
mark, in 1969 was able to test 1024 measuring points (e.g. relays in an electro-mechanical
exchange, trunks or channels) within 5 milliseconds. The states of each measuring point
(idle/busy or off/on) at the two latest scannings are stored in the computer memory, and
by comparing the readings we are able to detect changes of state. A change of state 0 — 1
corresponds to start of an occupation and 1 — 0 corresponds to termination of an occupation
(last-look principle). The scannings are controlled by a clock. Therefore we may monitor
every channel during time and measure time intervals and thus observe time distributions.
Whereas the classical equipment (erlang-meters) mentioned above observes the traffic process
in the state space (vertical, number representation), then the program controlled equipment
observes the traffic process in time space (horizontal, interval representation), in discrete
time. The amount of information is almost independent of the scanning interval as only state
changes are stored (the time of a scanning is measured in an integral number of scanning

intervals). O

Measuring methods have had decisive influence upon the way of thinking and the way of
formulating and analysing the statistical problems. The classical equipment operating in
state space has implied that the statistical analyses have been based upon state probabilities,
i.e. basically birth and death processes. From a mathematically point of view these models
have been rather complex (vertical measurements).
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The following derivations are in comparison very elementary and even more general, and they
are inspired by the operation in time space of the program controlled equipment. (Iversen,
1976 [36]) (horizontal measurements).

15.2 Theory of sampling

Let us assume we have a sample of n IID (Independent and Identically Distributed) observa-
tions { X7, Xo,...,X,} of a random variable with unknown finite mean value m; and finite
variance o2 (population parameters).

The mean value and variance of the sample are defined as follows:

L ZX (15.1)

<
I
|

1 [ _
2 2 2
$2 = n—1{§, :Xi—n-X} (15.2)

Both X and s? are functions of a random variable and therefore also random variables, defined
by a distribution we call the sample distribution. X is a central estimator of the unknown
population mean value mq, i.e.:

E{X}=m (15.3)

Furthermore, s?/n is a central estimator of the unknown variance of the sample mean X, i.e.:

o2{X} = s?/n. (15.4)

We describe the accuracy of an estimate of a sample parameter by means of a confidence
interval, which with a given probability specifies how the estimate is placed relatively to the
unknown theoretical value. In our case the confidence interval of the mean value becomes:

_ 52
Xty 11 ap-\/— (15.5)
n

where t,_11-q/2 is the upper (1 — «/2) percentile of the Student’s t-distribution with n—
1 degrees of freedom. The probability that the confidence interval includes the unknown
theoretical mean value is equal to (1—«) and is called the level of confidence. Some values
of the Student’s t-distribution are given in Table 15.1. When n becomes large, then the
Student’s t-distribution converges to the Normal distribution, and we may use the percentile
of this distribution. The assumption of independence are fulfilled for measurements taken
on different days, but for example not for successive measurements by the scanning method
within a limited time interval, because the number of busy channels at a given instant will
be correlated with the number of busy circuits in the previous and the next scanning. In
the following sections we calculate the mean value and the variance of traffic measurements
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Continuous traffic process
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Discrete traffic process
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0 1 2 3 4 5 6 7 8  Scan
Scanning method

a 0 —1 1 1 1—0—1—0 0 0
b 0 0—1 1—0 0 0—1 1 1
c 0 0—1—0 0 0—1 1 1—0
d 1 1 1 1—0 0 0 0 0 0
b 1 2 4 3 1 0 2 2 2 1

Figure 15.1: Observation of a traffic process by a continuous measuring method and by the
scanning method with regular scanning intervals. By the scanning method it is sufficient to

observe the changes of state.
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n|la=10%| a=5%| a=1%
1 6.314 12.706 63.657
2 2.920 4.303 9.925
5 2.015 2.571 4.032
10 1.812 2.228 3.169
20 1.725 2.086 2.845
40 1.684 2.021 2.704
00 1.645 1.960 2.576

Table 15.1: Percentiles of the Student’s t-distribution with n degrees of freedom. A specific
value of v corresponds to a probability mass «/2 in both tails of the Student’s t-distribution.
When n is large, then we may use the percentiles of the Normal distribution.

during for example one hour. This aggregated value for a given day may then be used as a
single observation in the formulae above, where the number of observations typically will be
the number of days, we measure.

Example 15.2.1: Confidence interval for call congestion
On a trunk group of 30 trunks (channels) we observe the outcome of 500 call attempts. This
measurement is repeated 11 times, and we find the following call congestion values (in percentage):

{9.2, 3.6, 3.6, 2.0, 7.4, 2.2, 5.2, 5.4, 3.4, 2.0, 1.4}

The total sum of the observations is 45.4 and the total of the squares of the observations is 247.88.
We find (15.1) X = 4.1273 % and (15.2) s? = 6.0502 (%)2. At 95%-level the confidence interval
becomes by using the ¢-values in Table 15.1: (2.47-5.78). It is noticed that the observations are
obtained by simulating a PCT-I traffic of 25 erlang, which is offered to 30 channels. According
to the Erlang B—formula the theoretical blocking probability is 5.2603 %. This value is within the
confidence interval. If we want to reduce the confidence interval with a factor 10, then we have to
do 100 times as many observations (cf. formula 15.5), i.e. 50,000 per measurements (sub-run). We
carry out this simulation and observe a call congestion equal to 5.245 % and a confidence interval
(5.093 — 5.398). O

15.3 Continuous measurements in an unlimited period

Measuring of time intervals by continuous measuring methods with no truncation of the
measuring period are easy to deal with by the theory of sampling described in Sec. 15.2
above.

For a traffic volume or a traffic intensity we can apply the formulae (3.46) and (3.48) for a
stochastic sum. They are quite general, the only restriction being stochastic independence
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0 T Time

a: Unlimited measuring period

b: Limited measuring period

Figure 15.2: When analysing traffic measurements we distinguish between two cases: (a)
Measurements in an unlimited time period. All calls initiated during the measuring period
contributes with their total duration. (b) Measurements in a limited measuring period. All
calls contribute with the portion of their holding times which are located inside the measuring
period. In the figure the sections of the holding times contributing to the measurements are
shown with full lines.

between X and N. In practice this means that the systems must be without congestion.
In general we will have a few percentages of congestion and may still as worst case assume
independence. By far the most important case is a Poisson arrival process with intensity .
We then get a stochastic sum (Sec. 3.3). For the Poisson arrival process we have when we
consider a time interval 7"

and therefore we find:

mys = )\T-mLt
ol = )\T{mit—l—af}

= AT -mgy = AT -mi, e, (15.6)
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where my, is the second (non-central) moment of the holding time distribution, and ¢, is
Palm’s form factor of the same distribution:

2

mao ¢ O‘t
e=—"=14 — (15.7)
m%t m%,t

)

The distribution of St will in this case be a compound Poisson distribution (Feller, 1950 [27]).

The formulee correspond to a traffic volume (e.g. erlang-hours). For most applications as
dimensioning we are interested in the average number of occupied channels, i.e. the traffic
intensity (rate) = traffic per time unit (m;; = 1, A = A), when we choose the mean holding
time as time unit:

(15.8)

&t (15.9)

These formulee are thus valid for arbitrary holding time distributions. The formuleae (15.8)
and (15.9) are originally derived by C. Palm (1941 [78]). In (Rabe, 1949 [35]) the formulee
for the special cases €; = 1 (constant holding time) and e; = 2 (exponentially distributed
holding times) were published.

The above formulae are valid for all calls arriving inside the interval T" when measuring the
total duration of all holding times regardless for how long time the stay (Fig. 15.2 a).

Example 15.3.1: Accuracy of a measurement

We notice that we always obtain the correct mean value of the traffic intensity (15.8). The variance,
however, is proportional to the form factor ;. For some common cases of holding time distributions
we get the following variance of the traffic intensity measured:

A
Constant: o =7
e , A
Exponential distribution: o; =3 2,
: , A
Observed (Fig. 4.3): 0f =7 3.83.

Observing telephone traffic, we often find that &, is significant larger than the value 2 (exponential
distribution), which is presumed to be valid in many classical teletraffic models (Fig. 4.3). Therefore,
the accuracy of a measurement is lower than given in many tables. This, however, is compensated by
the assumption that the systems are non—blocking. In a system with blocking the variance becomes
smaller due to negative correlation between holding times and number of calls. O
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Example 15.3.2: Relative accuracy of a measurement
The relative accuracy of a measurement is given by the ratio:

o; g /2 y .
S="t = {—t} = variation coefficient.
mi, AT

From this we notice that if ¢, = 4, then we have to measure twice as long a period to obtain the
same reliability of a measurement as for the case of exponentially distributed holding times. O

For a given time period we notice that the accuracy of the traffic intensity when measuring
a small trunk group is much larger than when measuring a large trunk group, because the
accuracy only depends on the traffic intensity A. When dimensioning a small trunk group, an
error in the estimation of the traffic of 10 % has much less influence than the same percentage
error on a large trunk group (Sec. 7.6.1). Therefore we measure the same time period on all
trunk groups. In Fig. 15.5 the relative accuracy for a continuous measurement is given by
the straight line h = 0.

15.4 Scanning method in an unlimited time period

In this section we only consider regular (constant) scanning intervals. The scanning principle
is for example applied to traffic measurements, call charging, numerical simulations, and
processor control. By the scanning method we observe a discrete time distribution for the
holding time which in real time usually is continuous.

In practice we usually choose a constant distance h between scanning instants, and we find
the following relation between the observed time interval and the real time interval (fig. 15.3):

Observed time Real time
0h Oh—-1h
1h 0Oh—-2h
2 h 1h-3h
3h 2h—-4h

We notice that there is overlap between the continuous time intervals, so that the discrete
distribution cannot be obtained by a simple integration of the continuous time interval over
a fixed interval of length h. If the real holding times have a distribution function F(t), then
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Observed number of scans
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Interval for the real time (scan)

Figure 15.3: By the scanning method a continuous time interval is transformed into a discrete
time interval. The transformation is not unique (cf. Sec. 15.4).

it can be shown that we will observe the following discrete distribution (Iversen, 1976 [30]):
1 [h
p(0) = —/ F(t)dt (15.10)
h Jo
1 [h
k) = E/ (F(t+kh)— F(t+ (k— D)} dt, k=12....  (1511)
0

Interpretation: The arrival time of the call is assumed to be independent of the scanning
process. Therefore, the density function of the time interval from the call arrival instant
to the first scanning time is uniformly distributed and equal to (1/h) (Sec. 6.3.3). The
probability of observing zero scanning instants during the call holding time is denoted by
p(0) and is equal to the probability that the call terminates before the next scanning time.
For at fixed value of the holding time ¢ this probability is equal to F'(t)/h, and to obtain the
total probability we integrate over all possible values ¢ (0 < ¢t < h) and get (15.10). In a
similar way we derive p(k) (15.11).

By partial integration it can be shown that for any distribution function F'(t) we will always
observe the correct mean value:

neS ke pk) = /Ooot-dF(t). (15.12)

When using Karlsson charging we will therefore always in the long run charge the correct
amount.

For exponential distributed holding time intervals, F((t) = 1—e #* we will observe a discrete
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distribution, Westerberg’s distribution (Iversen, 1976 [30]):

1
0 = 1—-——1(1= —ph 15.13
1
p(k) = — (1—e M) e ®Duh g —19 (15.14)
wh
This distribution can be shown to have the following mean value and form factor:
1
= — 15.15
erh 41
s o= ph 22 (15.16)

The form factor ¢ is equal to one plus the square of the relative accuracy of the measurement.
For a continuous measurement the form factor is 2. The contribution € — 2 is thus due to the
influence from the measuring principle.

The form factor is a measure of accuracy of the measurements. Fig. 15.4 shows how the form
factor of the observed holding time for exponentially distributed holding times depends on
the length of the scanning interval (15.16). By continuous measurements we get an ordinary
sample. By the scanning method we get a sample of a sample so that there is uncertainty
both because of the measuring method and because of the limited sample size.

Fig. 5.2 shows an example of the Westerberg distribution. It is in particular the zero class
which deviates from what we would expect from a continuous exponential distribution. If
we insert the form factor in the expression for o2 (15.9), then we get by choosing the mean
holding time as time unit m;; = 1/u = 1 the following estimates of the traffic intensity when
using the scanning method:

my; = Av
A e +1
2 — Zph. . 15.1
o; T{ eh—l} (15.17)

By the continuous measuring method the variance is 2A/T. This we also get now by letting
h — 0.

Fig. 15.5 shows the relative accuracy of the measured traffic volume, both for a continuous
measurement (15.8) & (15.9) and for the scanning method (15.17). Formula (15.17) was
derived by (Palm, 1941 [78]), but became only known when it was “re-discovered” by W.S.
Hayward Jr. (1952 [33]).

Example 15.4.1: Billing principles

Various principles are applied for charging (billing) of calls. In addition, the charging rate if usually
varied during the 24 hours to influence the habits of the subscriber. Among the principles we may
mention:
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(a) Fixed amount per call. This principle is often applied in manual systems for local calls (flat
rate).

(b) Karlsson charging. This corresponds to the measuring principle dealt with in this section
because the holding time is placed at random relative to the regular charging pulses. This
principle has been applied in Denmark in the crossbar exchanges.

(c) Modified Karlsson charging. We may for instance add an extra pulse at the start of the call.
In digital systems in Denmark there is a fixed fee per call in addition to a fee proportional
with the duration of the call.

(d) The start of the holding time is synchronised with the scanning process. This is for example
applied for operator handled calls and in coin box telephones.

a

15.5 Numerical example

For a specific measurement we calculate m;,; and 7. The deviation of the observed traffic
intensity from the theoretical correct value is approximately Normal distributed. Therefore,
the unknown theoretical mean value will be within 95% of the calculated confidence intervals
(cf. Sec. 15.2):

my;+ 1,96 0; (15.18)

The variance o7 is thus decisive for the accuracy of a measurement. To study which factors
are of major importance, we make numerical calculations of some examples. All formulee may
easily be calculated on a pocket calculator.

Both examples presume PCT-I traffic, (i.e. Poisson arrival process and exponentially dis-
tributed holding times), traffic intensity = 10 erlang, and mean holding time = 180 seconds,
which is chosen as time unit.

Example a: This corresponds to a classical traffic measurement:

Measuring period = 3600 sec = 20 time units = 7.
Scanning interval = 36 sec = 0.2 time units = h = 1/),.
(100 observations)

Example b: In this case we only scan once per mean holding time:

Measuring period = 720 sec = 4 time units = 7.
Scanning interval = 180 sec = 1 time unit = h = 1/A,.
(4 observations)

From Table 15.5 we can draw some general conclusions:

e By the scanning method we loose very little information as compared to a continuous
measurement as long as the scanning interval is less than the mean holding time (cf.
Fig. 15.4). A continuous measurement can be considered as an optimal reference for
any discrete method.



15.5. NUMERICAL EXAMPLE 321

Formfactor ¢

\

0 T T T T
0 1 2 3 Scan interval [s7]

Figure 15.4: Form factor for exponentially distributed holding times which are observed by
Erlang-k distributed scanning intervals in an unlimited measuring period. The case k = oo
corresponds to regular (constant) scan intervals which transform the exponential distribution
into Westerberg’s distribution. The case k = 1 corresponds to exponentially distributed scan
intervals (cf. the roulette simulation method). The case h = 0 corresponds to a continuous
measurement. We notice that by regular scan intervals we loose almost no information if the
scan interval is smaller than the mean holding time (chosen as time unit).
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Figure 15.5: Using double-logarithmic scale we obtain a linear relationship between the rela-
tive accuracy of the traffic intensity A and the measured traffic volume A-T when measuring
in an unlimited time period. A scan interval h = 0 corresponds to a continuous measurement
and h > 0 corresponds to the scanning method. The influence of a limited measuring method
is shown by the dotted line for the case A = 1 erlang and a continuous measurement taking
account of the limited measuring interval. T is measured in mean holding times.

e Exploitation of knowledge about a limited measuring period results in more information
for a short measurement (7" < 5), whereas we obtain little additional information for
T > 10. (There is correlation in the traffic process, and the first part of a measuring
period yields more information than later parts).

e By using the roulette method we loose of course more information than by the scanning
method (Iversen 1976, [36], 1977 [37]).

All the above mentioned factors have far less influence than the fact that the real holding
times often deviate from the exponential distribution. In practice we often observe a form
factor about 4-6.

The conclusion to be made from the above examples is that for practical applications it is
more relevant to apply the elementary formula (15.8) with a correct form factor than to take
account, of the measuring method and the measuring period.
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Example a Example b

Continuous Method
Unlimited (15.8) | 1.0000 1.0000 | 5.0000 2.2361
Limited 0.9500 0.9747 | 3.7729 1.9424

Scanning Method
Unlimited (15.17) | 1.0033 1.0016 | 5.4099 2.3259

Limited 0.9535 0.9765 | 4.2801 2.0688
Roulette Method

Unlimited 1.1000 1.0488 | 7.5000 2.7386

Limited 1.0500 1.0247 | 6.2729 2.5046

Table 15.2: Numerical comparison of various measuring principles in different time intervals.

The above theory is exact when we consider charging of calls and measuring of time inter-
vals. For stochastic computer simulations the traffic process in usually stationary, and the
theory can be applied for estimation of the reliability of the results. However, the results
are approximate as the theoretical assumptions about congestion free systems seldom are of
interest.

In real life measurements on working systems we have traffic variations during the day, techni-
cal errors, measuring errors etc. Some of these factors compensate each other and the results
we have derived give a good estimate of the reliability, and it is a good basis for comparing
different measurements and measuring principles.
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