
Building Fast Search Engines

Hugh E. Williams (hugh@cs.rmit.edu.au)
School of Computer Science and Information

Technology, RMIT



Overview

• User’s Information Needs
• Why users use search engines
• How users query with search engines

• Answers
• What is a good answer?

• How search engines provide a search service
• Indexing data
• Index design

• Architecture of a commercial search engine
• Research

• Fast searching and emerging technologies



Queries

• Search engines are one tool used to answer information
needs

• Users express their information needs as queries
• Usually informally expressed as two or three words (we

call this a ranked query)
• A recent study showed the mean query length was 2.4

words per query with a median of 2
• Around 48.4% of users submit just one query in a

session, 20.8% submit two, and about 31% submit three
or more

• Less than 5% of queries use Boolean operators (AND,
OR, and NOT), and around 5% contain quoted phrases



Queries...

• About 1.28 million different words were used in queries in
the Excite log studied (which contained 1.03 million
queries)

• Around 75 words account for 9% of all words used in
queries. The top-ten non-trivial words occurring in 531,000
queries are “sex” (10,757), “free” (9,710), “nude” (7,047),
“pictures” (5,939), “university” (4,383), “pics” (3,815), “chat”
(3,515), “adult” (3,385), “women” (3,211), and “new” (3,109)

• 16.9% of the queries were about entertainment, 16.8%
about sex, pornography, or preferences, and 13.3%
concerned commerce, travel, employment, and the
economy



Answers

• What is a good answer to a query?
• One that is relevant to the user’s information need!
• Search engines typically return ten answers-per-page,

where each answer is a short summary of a web
document

• Likely relevance to an information need is approximated
by statistical similarity between web documents and the
query

• Users favour search engines that have high precision,
that is, those that return relevant answers in the first
page of results



An Example Query



Top-ten Answers



Approximating
Relevance

• Statistical similarity is used to estimate the relevance of a
query to an answer

• Consider the query “Richardson Richmond Football”
• A good answer contains all three words, and the more

frequently the better; we call this term frequency (TF)
• Some query terms are more important—have better

discriminating power—than others. For example, an
answer containing only “Richardson” is likely to be better
than an answer containing only “Football”; we call this
inverse document frequency (IDF)

• A popular, state-of-the-art statistical ranking function that
incorporates these ideas is Okapi



• The Okapi ranking function is as follows:

• Q is a query that contains the words T
• k1, b, and k3 are constant parameters (k1=1.2 and b=0.75 work well, k3 is 7 or 1000)

• K is:
• tf is the term frequency of the term with a document

• qtf is the term frequency in the query
• w is:

• N is the number of documents, n is the number containing the term
• dl and avdl are the document length and average document length

• Overall: ranking uses the number of times a word occurs in
a document, the number of documents containing the term,
and the document length

Okapi BM25 Function

∑
∈ +

+×
+
+

QT qtfk

qtfk

tfK

tfk
w

3

31 )1()1(

)5.0(

)5.0(
log

+
+−

n

nN

)/.)1((1 avdldlbbk +−



More on Ranking...

• Other techniques are used to improve the accuracy of
search engines:

• Google Inc. use their patented PageRank(tm)
technology. Google ranks a page higher if it links to
pages that are an authorative source, and a link from an
authorative source to a page ranks that page higher

• Relevance feedback is a technique that adds words to a
query based on a user selecting a more like this option

• Query expansion adds words to a query using thesaural
or other techniques

• Searching within categories or groups to narrow a
search



How Search Engines
Work

• Search engines work as follows:
• They retrieve (spider or crawl) documents from the Web
• Documents are stored as a collection in a centralised

repository
• The collection is indexed to allow fast ranking to find

answers
• A web interface is provided for entering queries and

presenting answers
• Document summarisation is used to present short

answers to the user for judging relevance
• Documents are updated and re-indexed regularly



Indexing Data

• All search engines use inverted indexes to support fast
searching

• An inverted index consists of two components:
• A searchable in-memory vocabulary of all words in the

collection; stored with each word is the IDF and a pointer
to the inverted list for that word

• An on-disk inverted list for each word in the collection.
This list contains:

• the documents that contain the word
• the term frequency of the word in each document
• the offset or offsets of the word in each document (this is

optional, and is used for proximity and phrase queries)



Indexing Data



Resolving Queries

• Queries are resolved using the inverted index
• Consider the example query “Cat Mat Hat”. This is

evaluated as follows:
• Select a word from the query (say, “Cat”)
• Retrieve the inverted list from disk for the word
• Process the list. For each document the word occurs in, add weight

to an accumulator for that document based on the TF, IDF, and
document length

• Repeat for each word in the query
• Find the best-ranked documents with the highest weights
• Lookup the document in the mapping table
• Retrieve and summarise the documents, and present to the user



Fast Search Engines

• There are many well-known principles for building a fast
search engine

• Perhaps the most important is compression:
• Inverted lists are stored in a compressed format. This

allows more information per second to be retrieved from
disk, and it lowers disk head seek times

• As long as decompression is fast, there is a beneficial
trade-off in time

• Documents are stored in a compressed format for the
same reason

• Different compression schemes are used for lists (which
are integers) and documents (which are multimedia, but
mostly text)



0

5

10

15

20

25

30

35

% of 
collection 

size

Compressed Uncompressed

Index Size (% of collection)

0

0.2

0.4

0.6

0.8

1

Average 
Query 

Time (sec)

Compressed Uncompressed

Query Speed (Seconds)

Fast Search Engines...

• Average query times and index sizes for 25,000 queries on
10 gigabytes of indexed Web data



Fast Search Engines...

• Other principles of fast searching:
• Sort disk accesses to minimise disk head movement

when retrieving lists or documents
• Use hash tables in memory to store the vocabulary;

avoid slow hash functions that use modulo
• Pre-calculate and store constants in ranking formulae
• Carefully choose integer compression schemes
• Organise inverted lists so that the information frequently

needed is at the start of the list
• Use heap structures when partial sorting is required
• Develop a query plan for each query



Search Engine
Architecture



Search Engine
Architecture...

• The inverted lists are divided amongst a number of servers,
where each is known as a shard

• If an inverted list is required for a particular range of words,
then that shard server is contacted

• Each shard server can be replicated as many times as
required; each server in a shard is identical

• Documents are also divided amongst a number of servers
• Again, if a document is required within a particular range,

then the appropriate document server is contacted
• Each document server can also be replicated as many

times as required



What we’re working on...

• The Search Engine Group here at RMIT specialises in
research into fast search engines and applications of
search technology to other domains

• We are currently investigating:
• Fast phrase querying using new index structures

• Answer summarisation
• Index design

• Fast vocabulary searching and accumulation
• Index construction
• DNA and protein search engines

• Image and video management and retrieval
• General-purpose compression of collections

• Our new research testbed search engine will be released
under the GPL later this year



Pointers (& advertising!)

• The Search Engine Group, http://goanna.cs.rmit.edu.au/~jz/seg/
• My home page, http://www.cs.rmit.edu.au/~hugh/
• Witten, Moffat, and Bell, “Managing Gigabytes”, 2nd edition, Morgan Kaufmann, 1999
• Spink, Wolfram, Jansen and Saracevic, “Searching the web: The public and their queries”,

Journal of the American Society for Information Science, 52(3), 226--234, 2001. Queries
are available from: http://www.mds.rmit.edu.au/~hugh/queries/

• Williams and Zobel, “Compressing Integers for Fast File Access”, The Computer Journal,
42(3), 193-201, 1999.

• Moffat, Zobel, and Sharman, “Text compression for dynamic document databases”, IEEE
Transactions on Knowledge and Data Engineering, 9(2):302-313, March-April 1997.

• Zobel and Moffat, “Adding compression to a full text retrieval system”, Software-Practice
and Experience, 25(8):891-903, 1995.

• Zobel, Heinz, and Williams, “In-memory Hash Tables for Accumulating Text Vocabularies”,
Information Processing Letters. To appear.


