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High-resolution record of Northern
Hemisphere climate extending into the
last interglacial period

North Greenland Ice Core Project members*

*A full list of authors appears at the end of this paper

Two deep ice cores from central Greenland, drilled in the 1990s, have played a key role in climate reconstructions of the Northern
Hemisphere, but the oldest sections of the cores were disturbed in chronology owing to ice folding near the bedrock. Here we
present an undisturbed climate record from a North Greenland ice core, which extends back to 123,000 years before the present,
within the last interglacial period. The oxygen isotopes in the ice imply that climate was stable during the last interglacial period,
with temperatures 5°C warmer than today. We find unexpectedly large temperature differences between our new record from
northern Greenland and the undisturbed sections of the cores from central Greenland, suggesting that the extent of ice in the
Northern Hemisphere modulated the latitudinal temperature gradients in Greenland. This record shows a slow decline in
temperatures that marked the initiation of the last glacial period. Our record reveals a hitherto unrecognized warm period initiated
by an abrupt climate warming about 115,000 years ago, before glacial conditions were fully developed. This event does not appear
to have an immediate Antarctic counterpart, suggesting that the climate see-saw between the hemispheres (which dominated the
last glacial period) was not operating at this time.

The two deep ice cores drilled at the beginning of the 1990s in
central Greenland (GRIP' and GISP2*?, respectively 3,027 m and
3,053 m long) have played a key role in documenting rapid climate
changes during the last glacial period. However, it quickly became
clear that the bottom 10% of at least one (and most probably both)
of these ice cores** was disturbed owing to ice folding close to the 80 |
bedrock. The Central Greenland ice core records are fully reliable
climate archives back to 105,000 years before present (105 kyr Bp),
but the disturbances mean that no reliable Northern Hemisphere ice
core record of the previous interglacial (the Eemian climatic period)
was known to exist in the Northern Hemisphere.

This situation motivated the search for a new drilling site
where undisturbed ice from the last interglacial period'’, and even
from the previous glacial period, would be accessible''. The North
Greenland Ice Core Project (NGRIP) site, located at 75.10 °N and
42.32 °W with an elevation of 2,917m and an ice thickness of
3,085 m (Fig. 1), was selected on the basis of three criteria that, when
satisfied together, should produce dateable ice older than that found
in central Greenland: a position on a ridge to reduce deformation by
ice flow, flat bedrock, and a lower precipitation rate. The present
accumulation rate is 0.19 m ice equivalent yr~ ', the annual mean
temperature is —31.5 °C, and the ice near the base originates 50 km
upstream of the ice ridge in the direction of Summit'*>. The NGRIP
drilling started in 1996, and bedrock was reached in July 2003.
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The climate record of the oxygen isotopic composition of the ice
('0) from the NGRIP ice core is shown in Fig. 2 (and is available
as Supplementary Information). In cold glaciers where the basal ice
temperature is below freezing, the annual ice layers typically thin 60
towards zero thickness close to bedrock, and flow induced disturb-
ances can limit the usefulness of the deepest part of ice cores”. In
contrast, at NGRIP high rates of basal ice melting, estimated to be
7mmyr ' (refs 12, 14), remove the bottom layers, greatly restrict-
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ing the thinning of the layers and the possibility of ice disturbances.
Whereas the present-day accumulation is 15% lower at NGRIP than
at GRIP, NGRIP annual layer thicknesses at 105kyrsp (depth
2,900 m) are of the order of 1.1 cm, twice that of GRIP ice of this age.
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Figure 1 Map of Greenland, showing the locations of the deep ice core drilling sites. The
sites GRIP (72.5°N, 37.3 °W), GISP2 (72.5 °N, 38.3 °W), NGRIP (75.1 °N, 42.3 °W), Camp
Century (77.2 °N, 61.1 °W), Dye3 (65.2 °N, 43.8 °W) and Renland (71.3 °N, 26.7 °W) are
marked. The Greenland map was provided by S. Ekholm, Danish Cadastre.
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The NGRIP isotopic record covers the Holocene, the entire last
glacial period, and part of the Eemian period. The 24 abrupt and
climatic warm Dansgaard—Oeschger (DO) events, or Greenland
interstadials (GIS), initially numbered in the GRIP record"* are very
clearly identified (Fig. 2a, b), as are the climatic cold Greenland
stadials (GS) that follow the DO events. The NGRIP core has been
cross-dated to the GRIP core ss09sea chronology'® down to
105 kyr BP using the high-resolution ice isotope profiles and volcanic
events found in the ECM and DEP records™'®. Older ice is cross-dated
to the Antarctic Vostok ice core records by using concentrations of
methane and 3'®0 of the entrapped air®7-*. To determine if deep
ice folding is a problem at NGRIP, we concentrate on the period
corresponding to the marine isotope stage (MIS) 5d/5¢ transition
dated around 105 kyr BP at Vostok (GT4 timescale). From methane
and 8"°N air measurements, we confirm that this transition is the
counterpart of the Northern Hemisphere stadial 25'%*"* that ends
with the abrupt onset of DO 24 at the NGRIP depth of 2,940 m
(Fig. 3). At this depth, methane concentrations in air exhibit a rapid
increase from 450 to 650 p.p.b.v., a shift which is also observed in the
Vostok data* (Fig. 3), and the 8'°N air signal, measured with a
resolution of better than 100 yr, shows a rapid increase typical of DO
events, resulting from thermal and gravitational fractionation
processes. The increase in 8'°N and in methane concentration
over the warming of DO 24 are both located 7 m deeper in the ice
core than the corresponding 8'®0 transition®>?” (Fig. 3). This
reflects the typical depth shift, or gas-age/ice-age difference,
expected with normal firnification processes and later thinning
through ice flow*®. This supports our contention that the bottom ice
is undisturbed by folding or ice mixing. We note that similar
investigations on the GRIP core have confirmed that this record is
indeed disturbed at the time of the 5d/5c¢ transition”'¥, as in that
core the isotope and gas transitions are located at the same depth.

Below DO 19 the NGRIP record is compared to the planktonic
oxygen isotope record from marine core MD95-2045 drilled on the

Iberian margin® (Fig. 4). On the basis of strong similarities between
these two records and ice modelling as well as '®0 air measure-
ments on the deepest parts of the core compared with Vostok, the
basal part of the NGRIP record is dated to 123 kyr Bp. Owing to the
basal melting, the annual layer thickness of the ice from 2,700 to
3,085m (90 to 123 kyr Bp) thins much less than in the case of no
melting, further making dating straightforward. At these depths, the
depth scale is almost linearly proportional to time. Thus, we feel
confident in interpreting the ice isotopic record at NGRIP as the first
Northern Hemisphere ice core record of a highly detailed, undis-
turbed climate record of the late Eemian and the inception of the
last glacial period.

Climate record of the late Eemian period

We first examine the implications arising from the relatively high
(warm) and stable Eemian ice isotopic values found in the bottom
85 m of the ice core. As noted above, the annual layers are unusually
thick, 1.0 to 1.6 cm, through this period of glacial interception and
the latter part of the Eemian period, allowing a very detailed look at
this key climatic period. The maximum isotopic value of —32%o
found for the Eemian in the NGRIP core corresponds to the highest
values found in the GRIP and GISP2 ice cores. Although these other
cores have disturbed chronologies for ice older than 105 kyr Bp, they
do contain Eemian age ice'>'®, and the maximum isotopic values
can be assumed to represent the warmest Eemian climate™. Because
both the present interglacial isotopic values (—35%o) and the
Eemian values are similar in the GRIP, GISP2, and NGRIP ice, we
infer that the ice from the bottom of the NGRIP core has sampled
the warmest part of Eemian climate. This maximum isotopic value
is 3%o higher than the present value, and if attributed solely to
temperature, implies at least a 5K warmer temperature in the
Eemian than at present’®?’. It is notable that the 3%o isotopic
value difference between the present and the Eemian period seen at
NGRIP, GRIP and GISP2 is also found in northern Greenland ice
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Figure 2 The NGRIP stable oxygen isotopic record compared to the GRIP record. a, The
GRIP oxygen isotopic profile (blue) with respect to depth at GRIP. Isotopic values (5 '20) are
expressed in %o with respect to Vienna Standard Mean Ocean Water (V-SMOW). The
measurements have been performed on 55 cm samples with an accuracy of £0.1%o.
b, The NGRIP oxygen isotopic profile (red) with respect to depth at NGRIP. For comparison,
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the GRIP record (blue) has been plotted on the NGRIP depth scale using the rapid
transitions as tie points. ¢, The difference between the NGRIP and GRIP oxygen isotopic
profiles plotted above on the GRIP2001/ss09sea timescale'® in 50 yr resolution (black).
The record is compared to a record representing sea level changes® (green) and a 10-kyr
smoothed oxygen isotope profile from NGRIP (red).
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cores nearer the coast, such as Camp Century (77.2 °N, 61.1 °W) in
the west'”, and Renland (71.3 °N, 26.7 °W) in the east'”. We
conclude that the relative elevation differences during the Eemian
in northern Greenland are thus not large, and further, as the
Renland ice cap only is 325 m thick and cannot change elevation
by more than 100 m, the absolute elevation changes between the
Eemian and the present can only be of the order of 100 m. In
contrast, the Dye3 ice core in south Greenland (65.2 °N, 43.8 °W)
has an isotope difference of 5%o (ref. 15), suggesting as much as
500 m lower elevation there. The Eemian isotopic values reported
here paint a picture of an Eemian ice sheet with northern and central
ice thicknesses similar to the present, while the south Greenland ice
thickness is substantially reduced. This provides a valuable con-
straint for both future glaciological models of the Greenland
Eemian ice sheet as well as models of sea level changes®**7°.

Climate record of the glacial inception

This high resolution NGRIP record reveals a slow decline in
temperatures from the warm Eemian isotopic values to cooler,
intermediate values over 7,000 yr from 122 to 115 kyr Bp. The end of
the last interglacial thus does not appear to have started with an
abrupt climate change, but with a long and gradual deterioration of
climate. Before full glacial values are reached, however, the record
does reveal an abrupt cooling, with a first 5'%0 decrease at about
119 kyr BP, followed by relatively stable depleted 'O levels, which
we name here the Greenland stadial 26. The stadial is followed by an
abrupt increase at ~115 kyr BP, the onset of DO 25 (Fig. 4). NGRIP
is the first ice core climate record to so clearly resolve these rapid and
large fluctuations in climate right at the beginning of the full glacial
period. It is remarkable how well the features of the record compare
with the marine planktonic isotope record from the margin of the
Iberian coast, a proxy for the sea surface temperatures here. The
features are thus believed to be large-scale features typical of the
North Atlantic region®. It is significant that DO 25, while weak
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(with an amplitude 25% of the following DO events), was similar in
character to the following DO events, although it occurred at the
time when the ice caps were first building up. Thus it seems difficult
to call on melting ice or other large freshwater input to the North
Atlantic to trigger this event, although clearly we need more
information from this and future ice cores to fully understand
this first abrupt climate change of the last glacial.

Regional climate differences in Greenland

We now focus on a detailed comparison of the NGRIP §'%0 ice
profile with the GRIP ice isotopic record over their common part.
Despite being only 325km apart, these records have significant
differences that illustrate the importance of regional variations in
Greenland climate, even on quite long timescales. Figure 2b shows
the NGRIP ice isotope profile. The GRIP record shown in Fig. 2a is
plotted on the NGRIP depth scale using the DO events as references,
so the two records can be compared. At first glance, the two records
are very similar as expected, given the relative proximity of the cores.
But closer inspection shows substantial differences between the
records. Whereas NGRIP and GRIP have very similar '%0 levels
during the Holocene, glacial isotopic levels in the NGRIP record are
systematically depleted by 1%o to 2%o. The difference between
these isotopic profiles (Fig. 2c) reaches maxima at about 15—
20 kyr Bp, 25-30kyrBP and 60-70 kyr Bp. The magnitude of the
difference appears to be related to the Northern Hemisphere climate
curve, as represented by a smoothed version of the NGRIP record,
such that colder conditions have larger differences (Fig. 2¢). The
difference curve also compares relatively well to the global sea level
curve”, implying that the extent of the glacial continental ice sheets
may help to explain the difference.

The difference curve only weakly traces the DO events, suggesting
that the differences are not very well connected to processes
operating on millennial timescales. A preliminary reconstruction
of past temperatures based on the measured borehole temperatures
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Figure 3 Comparison of ice core records from NGRIP and Vostok for NGRIP depths 2,830
to 3,085 m. The isotopic composition, 8D, of the ice (blue) and of methane in the air
(green) for Vostok are on the top, and the isotopic composition, &'20, of the ice (red),
methane (green) and &"°N (black) of the air for NGRIP are on the bottom. A 50-kyr
resolution NGRIP record is available as Supplementary Information. The detailed Vostok
methane profile combines published data and recent measurements performed to
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examine the 5d/5c¢ transition at Vostok?. The Vostok and NGRIP data are reported on their
own scales, namely the GT4 timescale for Vostok (top axis) and the depth scale for NGRIP
(bottom axis). These two independent scales have been simply shifted in order to match
the sharp methane shift in Vostok with the sharp NGRIP warming at 2,940 m.
Furthermore, matching of the two scales should result in the estimated mean 1.1cm
annual layer thickness for the NGRIP profile.
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at NGRIP supports this finding. Temperatures reconstructed at
NGRIP during the Last Glacial Maximum are several degrees colder
than those at GRIP and GISP2. The observed isotopic differences are
large, given the relatively small distance between the two sites, and
our finding that the two sites are believed to have only undergone
small relative elevation changes during the glacial period***.
Whereas the isotopic records in the central parts of East Antarctica®
are rather similar and thus do not reveal large and significant
climatically driven differences, the Greenland sites, located just
325 km apart, reveal major differences. Now that we are beginning
to have a spatial distribution of deep ice core records, this brings
into play a new source of palaeoclimatic information for these deep
ice cores, that is, changes in geographical gradients with time. Our
best theory is to postulate that the air masses reaching the two sites
during the glacial had different sources. In response to the extent of
the Laurentide ice sheet, sea ice and the extensive North Atlantic ice
shelves, NGRIP has become further from the ocean, and may have
seen a higher fraction of air coming over the northern side of the
Laurentide ice sheet, bringing with it colder and more isotopically
depleted moisture than GRIP might have seen*>*’. Taken as a whole,
the findings here suggest that the atmospheric water cycle over
Greenland is substantially different between modern and glacial
worlds.

Basal water under the ice

When drilling was completed at NGRIP, basal water flooded the
deepest 45 m of the bore hole. Although we knew from temperature
profiles taken in 2001-02 that the base of the ice sheet was at or very
near the pressure melting point, liquid water was not seen in radar
profiles done during site selection. The melt rate at the base at
NGRIP is 7mm iceyr ', so the geothermal heat flow appears to be
as high as 140 mWm 2 (70 mWm 2 from latent heat, and
70mWm 2 conducted though the ice based on the measured
bore temperature). This high geothermal heat flow value is atypical
for Precambrian shields* believed to cover most of Greenland. The
recent indications of bacterial life in and under Antarctic ice*® have
revealed that the Earth possibly contains a previously unrecognized
cold biosphere that would be actively involved in biogeochemical
processes. Thus Greenland, like Antarctica, is now known to have
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Figure 4 The NGRIP isotopic profile from the Supplementary Information (a) compared
with the planktonic isotopes in the Iberian margin sediment core MD95-2024%° (b). The
Greenland Dansgaard—Oeschger events (interstadials) are numbered along with the
associated stadials. The two age scales are independent and seem to match within a few
kyr.
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liquid water at its base in some locations, water that awaits further
study for basal sediment composition and evidence of life in a truly
extreme environment.

Implications for future palaeoclimatic studies

The first measurements available on the NGRIP core already
provide a wealth of new and promising environmental information.
Most importantly, the NGRIP core contains the first continuous
record of the late Eemian and the interception of the last glacial
period to be recorded in a deep Greenland ice core. The palaeo-
climatic signal for Greenland now reaches 123,000 yr back in time,
and reveals a stable and warm late Eemian period. The end of the
Eemian is a slow decline to glacial, cooler, intermediate conditions,
but the onset of abrupt climate changes, the DO events that mark
the last glacial period, precedes full glacial conditions. The bottom
ice at NGRIP is essentially undisturbed and annual ice layers are
quite thick, a situation caused by basal melting which in turn results
from an unexpectedly high geothermal heat flow in North Green-
land. The additional knowledge that the central and northern ice
sheet during the Eemian period was at the same elevation as present
constrains modelled ice volumes and sea level changes during the
Eemian and glacial period. This interpretation is only consistent
with modelling studies of the ice sheet during the Eemian that,
although predicting an overall smaller ice sheet in accord with
higher observed sea levels during this time***>**™*%, allow for no
large ice elevation change for the central Greenland ice. The next
generation of models of the Greenland ice sheets should also include
substantial melt under the northern part of the ice sheet as well as
the northeast ice stream, important for the mass balance of the ice
sheet**".

The deepest ice should allow a detailed study of the last glacial
inception, including greenhouse gases and atmospheric dust load-
ing, and in future comparisons with Antarctic records we should be
able to investigate in detail the sequence of climatic events and
forcing between north and south during this key climatic period. We
find that the 5d/5¢ Vostok time period is the counterpart of the
Northern Hemisphere stadial 25 that ends with the abrupt onset of
DO 24 at the NGRIP depth 2,940 m. The north—south teleconnec-
tion observed here is similar in behaviour to all the following events
(DO events 1-23), and behaves as predicted by the simple thermo-
dynamic see-saw model®. In contrast, the weak stadial 26 followed
by the abrupt onset of DO 25 is not opposed by an Antarctic
reversal. This could be due to dating uncertainties between the two
cores, but it could also be information on the timing of the onset of
the teleconnection during the building of the ice caps and the
cooling of the climate. When did the north—-south climate see-saw
begin? Is there information waiting to be found that can tell us how
glacial periods begin, and whether we are in danger of entering one
in the near future? New and detailed measurements from the EPICA
Antarctica ice cores are expected to clarify this observation. And
finally, is there life at the base of the Greenland ice sheet? These are
some of the many questions that await further study of the new
NGRIP ice core. O
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