
46 1094-7167/01/$10.00 © 2001 IEEE IEEE INTELLIGENT SYSTEMS

T h e S e m a n t i c W e b

Semantic Web Services

Sheila A. McIlraith, Tran Cao Son, and Honglei Zeng, Stanford University

The Web, once solely a repository for text and images, is evolving into a provider

of services—information-providing services, such as flight information providers,

temperature sensors, and cameras, and world-altering services, such as flight-booking

programs, sensor controllers, and a variety of e-commerce and business-to-business

applications. Web-accessible programs, databases,
sensors, and a variety of other physical devices real-
ize these services. In the next decade, computers will
most likely be ubiquitous, and most devices will have
some sort of computer inside them. Vint Cerf, one
of the fathers of the Internet, views the population
of the Internet by smart devices as the harbinger of
a new revolution in Internet technology.

Today’s Web was designed primarily for human
interpretation and use. Nevertheless, we are seeing
increased automation of Web service interoperation,
primarily in B2B and e-commerce applications. Gen-
erally, such interoperation is realized through APIs that
incorporate hand-coded information-extraction code to
locate and extract content from the HTML syntax of a
Web page presentation layout. Unfortunately, when a
Web page changes its presentation layout, the API must
be modified to prevent failure. Fundamental to having
computer programs or agents1 implement reliable,
large-scale interoperation of Web services is the need to
make such services computer interpretable—to create
a Semantic Web2 of services whose properties, capa-
bilities, interfaces, and effects are encoded in an unam-
biguous, machine-understandable form.

The realization of the Semantic Web is underway
with the development of new AI-inspired content
markup languages, such as OIL,3 DAML+OIL
(www.daml.org/2000/10/daml-oil), and DAML-L (the
last two are members of the DARPA Agent Markup
Language (DAML) family of languages).4 These lan-
guages have a well-defined semantics and enable the
markup and manipulation of complex taxonomic and
logical relations between entities on the Web. A fun-

damental component of the Semantic Web will be the
markup of Web services to make them computer-inter-
pretable, use-apparent, and agent-ready. This article
addresses precisely this component.

We present an approach to Web service markup that
provides an agent-independent declarative API cap-
turing the data and metadata associated with a service
together with specifications of its properties and capa-
bilities, the interface for its execution, and the prereq-
uisites and consequences of its use. Markup exploits
ontologies to facilitate sharing, reuse, composition,
mapping, and succinct local Web service markup. Our
vision is partially realized by Web service markup in a
dialect of the newly proposed DAML family of Seman-
tic Web markup languages.4 Such so-called semantic
markup of Web services creates a distributed knowl-
edge base. This provides a means for agents to populate
their local KBs so that they can reason about Web ser-
vices to perform automatic Web service discovery, exe-
cution, and composition and interoperation.

To illustrate this claim, we present an agent tech-
nology based on reusable generic procedures and
customizing user constraints that exploits and show-
cases our Web service markup. This agent technol-
ogy is realized using the first-order language of the
situation calculus and an extended version of the
agent programming language ConGolog,5 together
with deductive machinery.

Figure 1 illustrates the basic components of our
Semantic Web services framework. It is composed of
semantic markup of Web services, user constraints, and
Web agent generic procedures. In addition to the
markup, our framework includes a variety of agent tech-

The authors propose the

markup of Web services

in the DAML family of

Semantic Web markup

languages. This markup

enables a wide variety of

agent technologies for

automated Web service

discovery, execution,

composition, and

interoperation. The

authors present one

such technology for

automated Web service

composition.

nologies—specialized services that use an
agent broker to send requests for service to
appropriate Web services and to dispatch ser-
vice responses back to the agent.

Automating Web services
To realize our vision of Semantic Web ser-

vices, we are creating semantic markup of
Web services that makes them machine
understandable and use-apparent. We are also
developing agent technology that exploits this
semantic markup to support automated Web
service composition and interoperability. Dri-
ving the development of our markup and
agent technology are the automation tasks that
semantic markup of Web services will enable
—in particular, service discovery, execution,
and composition and interoperation.

Automatic Web service discovery involves
automatically locating Web services that pro-
vide a particular service and that adhere to
requested properties. A user might say, for
example, “Find a service that sells airline tick-
ets between San Francisco and Toronto and
that accepts payment by Diner’s Club credit
card.” Currently, a human must perform this
task, first using a search engine to find a service
and then either reading the Web page associ-
ated with that service or executing the service
to see whether it adheres to the requested prop-
erties. With semantic markup of services, we
can specify the information necessary for Web
service discovery as computer-interpretable
semantic markup at the service Web sites, and
a service registry or (ontology-enhanced)
search engine can automatically locate appro-
priate services.

Automatic Web service execution involves
a computer program or agent automatically
executing an identified Web service. A user
could request, “Buy me an airline ticket from
www.acmetravel.com on UAL Flight 1234
from San Francisco to Toronto on 3 March.”
To execute a particular service on today’s
Web, such as buying an airline ticket, a user
generally must go to the Web site offering that
service, fill out a form, and click a button to
execute the service. Alternately, the user might
send an http request directly to the service
URL with the appropriate parameters en-
coded. Either case requires a human to under-
stand what information is required to execute
the service and to interpret the information the
service returns. Semantic markup of Web ser-
vices provides a declarative, computer-inter-
pretable API for executing services. The
markup tells the agent what input is necessary,
what information will be returned, and how to

execute—and potentially interact with—the
service automatically.

Automatic Web service composition and
interoperation involves the automatic selec-
tion, composition, and interoperation of
appropriate Web services to perform some
task, given a high-level description of the
task’s objective. A user might say, “Make the
travel arrangements for my IJCAI 2001 con-
ference trip.” Currently, if some task requires
a composition of Web services that must inter-
operate, then the user must select the Web ser-
vices, manually specify the composition, en-
sure that any software for interoperation is
custom-created, and provide the input at
choice points (for example, selecting a flight
from among several options). With semantic
markup of Web services, the information nec-
essary to select, compose, and respond to ser-
vices is encoded at the service Web sites. We
can write software to manipulate this markup,
together with a specification of the task’s
objectives, to achieve the task automatically.
Service composition and interoperation lever-
age automatic discovery and execution.

Of these three tasks, none is entirely real-
izable with today’s Web, primarily because of
a lack of content markup and a suitable
markup language. Academic research on Web
service discovery is growing out of agent
matchmaking research such as the Lark sys-
tem,6 which proposes a representation for
annotating agent capabilities so that they can
be located and brokered. Recent industrial

efforts have focused primarily on improving
Web service discovery and aspects of service
execution through initiatives such as the Uni-
versal Description, Discovery, and Integration
(UDDI) standard service registry; the XML-
based Web Service Description Language
(WSDL), released in September 2000 as a
framework-independent Web service descrip-
tion language; and ebXML, an initiative of the
United Nations and OASIS (Organization for
the Advancement of Structured Information
Standards) to standardize a framework for
trading partner interchange.

E-business infrastructure companies are
beginning to announce platforms to support
some level of Web-service automation. Exam-
ples of such products include Hewlett-Packard’s
e-speak, a description, registration, and dynamic
discovery platform for e-services; Microsoft’s
.NET and BizTalk tools; Oracle’s Dynamic Ser-
vices Framework; IBM’s Application Frame-
work for E-Business; and Sun’s Open Network
Environment. VerticalNet Solutions, anticipat-
ing and wishing to accelerate the markup of
services for discovery, is building ontologies
and tools to organize and customize Web ser-
vice discovery and—with its OSM Platform—
is delivering an infrastructure that coordinates
Web services for public and private trading
exchanges.

What distinguishes our work in this arena
is our semantic markup of Web services in an
expressive semantic Web markup language
with a well-defined semantics. Our semantic

MARCH/APRIL 2001 computer.org/intelligent 47

Web procedures
ontologies

Semantic markup of
personal or company

constraints and preferences

Semantic-markup-enabled
agent technology

Web service
ontologies

Semantic markup of
Web service sites

Agent broker

Email ...

Knowledge
base

Figure 1. A framework for Semantic Web services.

markup provides a semantic layer that should
comfortably sit on top of efforts such as
WSDL, enabling a richer level of description
and hence more sophisticated interactions and
reasoning at the agent or application level. To
demonstrate this claim, we present agent
technology that performs automatic Web ser-
vice composition, an area that industry is not
yet tackling in any great measure.

Semantic Web service markup
The three automation tasks we’ve described

are driving the development of our semantic
Web services markup in the DAML family of
markup languages. We are marking up

• Web services, such as Yahoo’s driving
direction information service or United
Airlines’ flight booking service;

• user and group constraints and preferences,
such as a user’s—let’s say Bob’s—sched-
ule, that he prefers driving over flying if the
driving time to his destination is less than
three hours, his use of stock quotes exclu-
sively from the E*Trade Web service, and
so forth; and

• agent procedures, which are (partial) com-
positions of existing Web services, designed
to perform a particular task and marked up
for sharing and reuse by groups of other
users. Examples include Bob’s business
travel booking procedure or his friend’s
stock assessment procedure.

Our DAML markup provides a declarative
representation of Web service and user con-
straint knowledge. (See the “The Case for
DAML” sidebar to learn why we chose the
DAML family of markup languages.) A key
feature of our markup is the exploitation of
ontologies, which DAML+OIL’s roots in
description logics and frame systems support.

We use ontologies to encode the classes
and subclasses of concepts and relations per-
taining to services and user constraints. (For
example, the service BuyUALTicket and Buy-
LufthansaTicket are subclasses of the service
BuyAirlineTicket, inheriting the parameters cus-
tomer, origin, destination, and so forth). Domain-
independent Web service ontologies are aug-
mented by domain-specific ontologies that
inherit concepts from the domain-indepen-
dent ontologies and that additionally encode
concepts that are specific to the individual
Web service or user. Using ontologies
enables the sharing of common concepts, the
specialization of these concepts and vocab-
ulary for reuse across multiple applications,

the mapping of concepts between different
ontologies, and the composition of new con-
cepts from multiple ontologies. Ontologies
support the development of succinct service-
or user-specific markup by enabling an indi-
vidual service or user to inherit much of its
semantic markup from ontologies, thus
requiring only minimal markup at the Web
site. Most importantly, ontologies can give
semantics to markup by constraining or
grounding its interpretation. Web services
and users need not exploit Web service
ontologies, but we foresee many domains
where communities will want to agree on a
standard definition of terminology and
encode it in an ontology.

DAML markup of Web services
Collectively, our markup of Web services

provides

• declarative advertisements of service
properties and capabilities, which can be
used for automatic service discovery;

• declarative APIs for individual services
that are necessary for automatic service
execution; and

• declarative specifications of the prerequi-
sites and consequences of individual ser-
vice use that are necessary for automatic
service composition and interoperation.

The semantic markup of multiple Web ser-
vices collectively forms a distributed KB of
Web services. Semantic markup can populate
detailed registries of the properties and capa-
bilities of Web services for knowledge-based
indexing and retrieval of Web services by
agent brokers and humans alike. Semantic
markup can also populate individual agent
KBs, to enable automated reasoning about
Web services.

Our Web service markup comprises a num-
ber of different ontologies that provide the
backbone for our Web service descriptions. We
define the domain-independent class of ser-
vices, Service, and divide it into two subclasses,
PrimitiveService and ComplexService. In the context
of the Web, a primitive service is an individ-
ual Web-executable computer program, sen-
sor, or device that does not call another Web
service. There is no ongoing interaction
between the user and a primitive service. The
user or agent calls the service, and the service
returns a response. An example of a primitive
service is a Web-accessible program that
returns a postal code, given a valid address. In
contrast, a complex service is composed of

multiple primitive services, often requiring an
interaction or conversation between the user
and services, so that the user can make deci-
sions. An example might be interacting with
www.amazon.com to buy a book.

Domain-specific Web service ontologies
are subclasses of these general classes. They
enable an individual service to inherit
shared concepts, and vocabulary in a partic-
ular domain. The ontology being used is spec-
ified in the Web site markup and then simply
refined and augmented to provide service-
specific markup. For example, we might
define an ontology containing the class Buy,
with subclass BuyTicket, which has subclasses
BuyMovieTicket, BuyAirlineTicket, and so forth. Buy-
AirlineTicket has subclasses BuyUALTicket, Buy-
LufthansaTicket, and so on. Each service is either
a PrimitiveService or a ComplexService. Associated
with each service is a set of Parameters. For
example, the class Buy will have the parame-
ter Customer. BuyAirlineTicket will inherit the Cus-
tomer parameter and will also have the para-
meters Origin, Destination, DepartureDate, and so on.
We constructed domain-specific ontologies
to describe parameter values. For example,
we restricted the values of Origin and Destination
to instances of the class Airport. BuyUALTicket
inherits these parameters, further restricting
them to Aiports whose property Airlines includes
UAL. These value restrictions provide an
important way of describing Web service
properties, which supports better brokering
of services and simple type checking for our
declarative APIs. In addition, we have used
these restrictions in our agent technology to
create customized user interfaces.

Markup for Web service discovery. To auto-
mate Web service discovery, we associate
properties with services that are relevant to
automated service classification and selec-
tion. In the case of BuyUALTicket, these would
include service-independent property types
such as the company name, the service URL,
a unique service identifier, the intended use,
and so forth. They would also include service-
specific property types such as valid methods
of payment, travel bonus plans accepted, and
so forth. This markup, together with certain of
the properties specified later, collectively pro-
vides a declarative advertisement of service
properties and capabilities, which is computer
interpretable and can be used for automatic
service discovery.

Markup for Web service execution. To auto-
mate Web service execution, markup must

48 computer.org/intelligent IEEE INTELLIGENT SYSTEMS

T h e S e m a n t i c W e b

enable a computer agent to automatically
construct and execute a Web service request
and interpret and potentially respond to the
service’s response. Markup for execution
requires a dataflow model, and we use both
a function metaphor and a process or con-
versation model to realize our markup. Each
primitive service is conceived as a function
with Input values and potentially multiple
alternative Output values. For example, if the
user orders a book, the response will differ
depending on whether the book is in stock,
out of stock, or out of print.

Complex services are conceived as a com-
position of functions (services) whose output

might require an exchange of information
between the agent and an individual service.
For example, a complex service that books a
flight for a user might involve first finding
flights that meet the user’s request, then sus-
pending until the user selects one flight. Com-
plex services are composed of primitive or
complex services using typical programming
languages and business-process modeling
language constructs such as Sequence, Iteration,
If-then-Else, and so forth. This markup provides
declarative APIs for individual Web services
that are necessary for automatic Web service
execution. It additionally provides a process
dataflow model for complex services. For an

agent to respond automatically to a complex
service execution—that is, to automatically
interoperate with that service—it will require
some of the information encoded for auto-
matic composition and interoperation.

Markup for Web service composition. The
function metaphor used for automatic Web ser-
vice execution provides information about data
flow, but it does not provide information about
what the Web service actually does. To auto-
mate service composition, and for services and
agents to interoperate, we must also encode
how the service affects the world. For exam-
ple, when a user visits www.amazon.com and

MARCH/APRIL 2001 computer.org/intelligent 49

In recent years, several markup languages have been devel-
oped with a view to creating languages that are adequate for
realizing the Semantic Web. The construction of these lang-
uages is evolving according to a layered approach to language
development.1

XML was the first language to separate the markup of Web
content from Web presentation, facilitating the representa-
tion of task- and domain-specific data on the Web. Unfortu-
nately, XML lacks semantics. As such, computer programs can-
not be guaranteed to determine the intended interpretation
of XML tags. For example, a computer program would not be
able to identify that <SALARY> data refers to the same informa-
tion as <WAGE> data, or that the <DUE-DATE> specified at a Web
service vendor’s site might be different from the <DUE-DATE> at
the purchaser’s site.

The World Wide Web Consortium developed the resource
description framework (RDF)2 as a standard for metadata.
The goal was to add a formal semantics to the Web, defined
on top of XML, to provide a data model and syntax convention
for representing the semantics of data in a standardized inter-
operable manner. It provides a means of describing the relation-
ships among resources (basically anything nameable by a URI)
in terms of named properties and values. The RDF working
group also developed RDF Schema, an object-oriented type sys-
tem that can be effectively thought of as a minimal ontology-
modeling language. Although RDF and RDFS provide good
building blocks for defining a Semantic Web markup language,
they lack expressive power. For example, you can’t define prop-
erties of properties, necessary and sufficient conditions for class
membership, or equivalence and disjointness of classes. Further-
more, the only constraints expressible are domain and range
constraints on properties. Finally, and perhaps most importantly,
the semantics remains underspecified.

Recently, there have been several efforts to build on RDF
and RDFS with more AI-inspired knowledge representation
languages such as SHOE,3 DAML-ONT,4 OIL,5 and most recently
DAML+OIL. DAML+OIL is the second in the DAML family of
markup languages, replacing DAML-ONT as an expressive ontol-
ogy description language for markup. Building on top of RDF
and RDFS, and with its roots in AI description logics, DAML+OIL
overcomes many of the expressiveness inadequacies plaguing
RDFS and most important, has a well-defined model-theoretic
semantics as well as an axiomatic specification that determines
the language’s intended interpretations. DAML+OIL is unam-
biguously computer-interpretable, thus making it amenable to

agent interoperability and automated-reasoning techniques,
such as those we exploit in our agent technology.

In the next six months, DAML will be extended with the addi-
tion of DAML-L, a logical language with a well-defined seman-
tics and the ability to express at least propositional Horn clauses.
Horn clauses enable compact representation of constraints and
rules for reasoning. Consider a flight information service that
encodes whether a flight shows a movie. One way to do this is
to create a markup for each flight indicating whether or not it
does. A more compact representation is to write the constraint
flight-over-3-hours → movie and to use deductive reasoning to infer if a
flight will show a movie. This representation is more compact,
more informative, and easier to modify than an explicit enumer-
ation of individual flights and movies. Similarly, such clauses can
represent markup constraints, business rules, and user prefer-
ences in a compact form.

DAML+OIL and DAML-L together will provide a markup lan-
guage for the Semantic Web with reasonable expressive power
and a well-defined semantics. Should further expressive power
be necessary, the layered approach to language development
lets a more expressive logical language extend DAML-L or act
as an alternate extension to DAML+OIL. Because DAML-L has
not yet been developed, our current Web service markup is in a
combination of DAML+OIL and a subset of first-order logic. Our
markup will evolve as the DAML family of languages evolves.

References

1. D. Fensel, “The Semantic Web and Its Languages,” IEEE Intelligent
Systems, vol. 15, no. 6, Nov./Dec. 2000, p. 67–73.

2. O. Lassila and R. Swick, Resource Description Framework (RDF)
Model and Syntax Specification, W3C Recommendation, World
Wide Web Consortium, Feb. 1999; www.w3.org/TR/REC-rdf-syntax
(current 11 Apr. 2001).

3. S. Luke and J. Heflin, SHOE 1.01. Proposed Specification,
www.cs.umd.edu/projects/plus/SHOE/spec1.01.html, 2000 (current
20 Mar. 2001).

4. J. Hendler and D. McGuinness, “The DARPA Agent Markup
Language,” IEEE Intelligent Systems, vol. 15, no. 6, Nov./Dec. 2000,
pp. 72–73.

5. F. van Harmelen and I. Horrocks, “FAQs on OIL: The Ontology Infer-
ence Layer,” IEEE Intelligent Systems, vol. 15, no. 6, Nov./Dec. 2000,
pp. 69–72.

The Case for DAML

successfully executes the BuyBook service, she
knows she has purchased a book, that her credit
card will be debited, and that she will receive
a book at the address she provided. Such con-
sequences of Web service execution are not
part of the markup nor part of the function-
based specification provided for automatic
execution. To automate Web service composi-
tion and interoperation, or even to select an
individual service to meet some objective, we
must encode prerequisites and consequences
of Web service execution for computer use.

Our DAML markup of Web services for
automatic composition and interoperability is
built on an AI-based action metaphor. We con-
ceive each Web service as an action—either a
PrimitiveAction or a ComplexAction. Primitive actions
are in turn conceived as world-altering actions
that change the state of the world, such as deb-
iting the user’s credit card, booking the user a
ticket, and so forth; as information-gathering
actions that change the agent’s state of knowl-
edge, so that after executing the action, the
agent knows a piece of information; or as
some combination of the two.

An advantage of exploiting an action
metaphor to describe Web services is that it lets
us bring to bear the vast AI research on rea-
soning about action, to support automated rea-
soning tasks such as Web service composition.
In developing our markup, we choose to remain
agnostic with respect to an action representa-
tion formalism. In the AI community, there is
widespread disagreement over the best action
representation formalism. As a consequence,
different agents use very different internal rep-
resentations for reasoning about and planning
sequences of actions. The planning community
has addressed this lack of consensus by devel-
oping a specification language for describing
planning domains—Plan Domain Description
Language (PDDL).7 We adopt this language
here, specifying each of our Web services in
terms of PDDL-inspired Parameters, Preconditions,
and Effects. The Input and Output necessary for
automatic Web service execution also play the
role of KnowledgePreconditions and KnowledgeEffects for
the purposes of Web service composition and
interoperation. We assume, as in the planning
community, that users will compile this gen-
eral representation into an action formalism that
best suits their reasoning needs. Translators
already exist from PDDL to a variety of differ-
ent AI action formalisms.

Complex actions, like complex services, are
compositions of individual services; however,
dependencies between these compositions are
predicated on state rather than on data, as is

the case with the execution-motivated markup.
Complex actions are composed of primitive
actions or other complex actions using typi-
cal programming languages and business-
process modeling-language constructs such
as Sequence, Parallel, If-then-Else, While, and so forth.

DAML markup of user constraints
and preferences

Our vision is that agents will exploit users’
constraints and preferences to help customize
users’requests for automatic Web service dis-
covery, execution, or composition and inter-
operation. Examples of user constraints and
preferences include user Bob’s schedule, his
travel bonus point plans, that he prefers to drive
if the driving time to his destination is less than

three hours, that he likes to get stock quotes
from the E*Trade Web service, that his com-
pany requires all domestic business travel to
be with a particular set of carriers, and so forth.
The actual markup of user constraints is rela-
tively straightforward, given DAML-L. We can
express most constraints as these Horn clauses
(see the sidebar), and ontologies let users clas-
sify, inherit, and share constraints. Inheriting
terminology from Web service ontologies
ensures, for example, that Bob’s constraint
about DrivingTime is enforced by determining the
value of DrivingTime from a service that uses the
same notion of DrivingTime. More challenging
than the markup itself is the agent technology
that will appropriately exploit it.

DAML-enabled agent technology
Our semantic markup of Web services

enables a wide variety of agent technologies.
Here, we present an agent technology we are
developing that exploits DAML markup of
Web services to perform automated Web ser-
vice composition.

Consider the example task given earlier:
“Make the travel arrangements for my IJCAI
2001 conference trip.” If you were to perform
this task using services available on the Web,
you might first find the IJCAI 2001 confer-
ence Web page and determine the confer-
ence’s location and dates. Based on the loca-
tion, you would choose the most appropriate
mode of transportation. If traveling by air, you
might then check flight schedules with one or
more Web services, book flights, and so on.

Although the entire procedure is lengthy
and somewhat tedious to perform, the aver-
age person could easily describe how to make
your travel arrangements. Nevertheless, it’s
not easy to get someone else to make the
arrangements for you. What makes this task
difficult is not the basic steps but the need to
make decisions to customize the generic pro-
cedure to enforce the traveler’s constraints.
Constraints can be numerous and conse-
quently difficult for another person to keep in
mind and satisfy. Fortunately, enforcing com-
plex constraints is something a computer does
well.

Our objective is to develop agent technol-
ogy that will perform these types of tasks auto-
matically by exploiting DAML markup of
Web services and of user constraints and pref-
erences. We argue that many of the activities
users might wish to perform on the Semantic
Web, within the context of their workplace or
home, can be viewed as customizations of
reusable, high-level generic procedures. Our
vision is to construct such reusable, high-level
generic procedures and to represent them as
distinguished services in DAML using a sub-
set of the markup designed for complex ser-
vices. We also hope to archive them in
sharable generic procedures ontologies so that
multiple users can access them. Generic pro-
cedures are customized with respect to users’
constraints, using deductive machinery.

Generic procedures and customiz-
ing user constraints

We built our research on model-based pro-
gramming8 and on research into the agent
programming language Golog and its vari-
ants, such as ConGolog.5 Our goal was to
provide a DAML-enabled agent program-
ming capability that supports writing generic
procedures for Web service-based tasks.

Model-based programs comprise a model—
in this case, the agent’s KB—and a program—
the generic procedure we wish to execute. We
argue that the situation calculus (a logical lan-
guage for reasoning about action and change)

50 computer.org/intelligent IEEE INTELLIGENT SYSTEMS

T h e S e m a n t i c W e b

Our vision is that agents will exploit

users’ constraints and preferences

to help customize users’ requests

for automatic Web service

discovery, execution, or

composition and interoperation.

and ConGolog5 provide a compelling language
for realizing our agent technology. When a user
requests a generic procedure, such as a generic
travel arrangements procedure, the agent pop-
ulates its local KB with the subset of the PDDL-
inspired DAML Web service markup that is rel-
evant to the procedure. It also adds the user’s
constraints to its KB. Exploiting our action
metaphor for Web services, the agent KB pro-
vides a logical encoding of the preconditions
and effects of the Web service actions in the
language of the situation calculus.

Model-based programs, such as our generic
procedures, are written in ConGolog without
prior knowledge of what specific services the
agent will use or of how exactly to use the avail-
able services. As such, they capture what to
achieve but not exactly how to do it. They use
procedural programming language constructs
(if-then-else, while, and so forth) composed with
concepts defined in our DAML service and
constraints ontologies to describe the proce-
dure. The agent’s model-based program is not
executable as is. We must deductively instanti-
ate it in the context of the agent’s KB, which
includes properties of the agent and its user,
properties of the specific services we are using,
and the state of the world. We perform the
instantiation by using deductive machinery. An
instantiated program is simply a sequence of
primitive actions (individual Web services),
which ConGolog interprets and sends to the
agent broker as a request for service. The great
advantage of these generic procedures is that
the same generic procedure, called with differ-
ent parameters and user constraints, can gen-
erate very different sequences of actions.

ConGolog
ConGolog is a high-level logic programming

language developed at the University of
Toronto. Its primary use is for robot program-

ming and to support high-level robot task
planning. ConGolog is built on top of situ-
ation calculus. In situation calculus, the
world is conceived as a tree of situations,
starting at an initial situation, S0, and evolv-
ing to a new situation through the perfor-
mance of an action a (for example, Web
services such as BuyUALTicket(origin,dest, date)).
Thus, a situation s is a history of the actions
performed from S0. The state of the world
is expressed in terms of relations and func-
tions (so-called fluents) that are true or false
or have a particular value in a situation, s
(for example, flightAvailable(origin,dest, date,s)).

Figure 2 illustrates the tree of situations
induced by a situation calculus theory with
actions a1, …,an (ignore the ×’s for the time
being). The tree is not actually computed, but
it reflects the search space the situation cal-
culus KB induces. We could have performed
deductive plan synthesis to plan sequences
of Web service actions over this search space,
but instead, we developed generic procedures
in ConGolog.

ConGolog provides a set of extralogical
procedural programming constructs for
assembling primitive and complex situation
calculus actions into other complex actions.5

Let δ1 and δ2 be complex actions, and let ϕ
and a be so-called pseudo fluents and pseudo
actions, respectively—that is, a fluent or
action in the language of situation calculus
with all its situation arguments suppressed.
Figure 3a shows a subset of the constructs in
the ConGolog language.

A user can employ these constructs to
write generic procedures, which are complex
actions in ConGolog. The instruction set for
these complex actions is simply the general
Web services (for example, BookAirlineTicket) or
other complex actions. Figure 3b gives exam-
ples of ConGolog statements.

To instantiate a ConGolog program in the

context of a KB, the abbreviation Do(δ,s,s′) is
defined. It says that Do(δ,s,s′) holds when-
ever s′ is a terminating situation following
the execution of complex action δ, starting in
situation s. Given the agent KB and a generic
procedure δ, we can instantiate δwith respect
to the KB and the current situation S0 by
entailing a binding for the situation variable
s. Because situations are simply the history
of actions from S0, the binding for s defines a
sequence of actions that leads to successful
termination of the generic procedure δ:

KB ❘= (∃ s).Do(δ, S0, s)

It is important to observe that ConGolog pro-
grams—and hence our generic procedures—
are not programs in the conventional sense.
Although they have the complex structure of
programs—including loops, if-then-else state-
ments, and so forth—they differ in that they are
not necessarily deterministic. Rather than nec-
essarily dictating a unique sequence of actions,
ConGolog programs serve to add temporal con-
straints to the situation tree of a KB, as Figure
2 depicts. As such, they eliminate certain
branches of the situation tree (designated by the
×’s), reducing the size of the search space of
situations that instantiate the generic procedure.

MARCH/APRIL 2001 computer.org/intelligent 51

aj

. . .

a1 an

S0

.
aja1 an aja1 an

. . .
aja1 an

.
aja1 an

Figure 2. The tree of situations.

Figure 3. (a) A subset of the constructs in the
ConGolog language. (b) Examples of
ConGolog statements.

Primitive action: a
Test of truth: ϕ?
Sequence: (δ1; δ2)
Nondeterministic choice between actions: (δ1 | δ2)
Nondeterministic choice of arguments: πx.δ
Nondeterministic iteration: δ *
Conditiona: if ϕ then δ1 else δ2 endIf
Loop: while ϕ do δ endWhile
Procedure: proc P(v) δ endProc

(a)

while ∃ x.(hotel(x)∧ goodLoc(x,dest)) do
checkAvailability(x,dDate,rDate)

endWhile

if ¬ hotelAvailable(dest,dDate,rDate) then
BookB&B(cust,dest,dDate,rDate)

endIf

proc Travel(cust,origin,dest,dDate,rDate,purpose);
If registrationRequired then Register endlf;
BookTranspo(cust,origin,dest,dDate,rDate);
BookAccommodations(cust,dest,dDate,rDate);
UpdateExpenseClaim(cust);
Inform(cust)

endProc

(b)

The Desirable predicate, Desirable(a,s),
which we introduced into ConGolog to incor-
porate user constraints, also further reduces the
tree to those situations that are desirable to the
user. Because generic procedures and cus-
tomizing user constraints simply serve to con-
strain the possible evolution of actions, depend-
ing on how they are specified, they can play
different roles. At one extreme, the generic pro-
cedure simply constrains the search space
required in planning. At the other extreme,
a generic procedure can dictate a unique
sequence of actions, much in the way a tradi-
tional program might. We leverage this nonde-
terminism to describe generic procedures that
have the leeway to be relevant to a broad range
of users, while at the same time being cus-
tomizable to reflect the desires of individual
users.We contrast this to a traditional procedural
program that would have to be explicitly mod-
ified to incorporate unanticipated constraints.

Implementation
To implement our agent technology, we

started with an implementation of an online
ConGolog interpreter in Quintus Prolog 3.2.5

We augmented and extended this interpreter
in a variety of ways (discussed further else-
where9). Some of the issues we dealt with were
balancing the offline search for an instantia-
tion of a generic procedure with online execu-
tion of information-gathering Web services,
because they help to further constrain the
search space of possible solutions. We added
new constructs to the ConGolog language to
enable more flexible encoding of generic pro-
cedures, and we incorporated users’ cus-
tomizing constraints into ConGolog by adding
the Desirable predicate mentioned earlier.

We also modified the interpreter to com-
municate with the Open Agent Architecture
agent brokering system.10 OAA sends requests
to appropriate Web services and dispatches
responses to the agents. When the Semantic
Web is a reality, Web services will communi-
cate through DAML. Currently, we must
translate our markup (DAML+OIL and a sub-
set of first-order logic) back and forth to
HTML through a set of Java programs. We
use an information extraction program, World
Wide Web Wrapper Factory (http://db.cis.
upenn.edu/W4F), to extract the information
Web services currently produce in HTML. All
information-gathering services are performed
this way. For obvious practical and financial
reasons, world-altering aspects of services are
not actually executed.

Example
Here, we illustrate the execution of our

agent technology with a generic procedure
for making travel arrangements. Let’s say
Bob wants to travel from San Francisco to
Monterey on Knowledge Systems Lab busi-
ness with the DARPA-funded DAML re-
search project. He has two constraints—one
personal and one inherited from the KSL, to
which he belongs. He wishes to drive rather
than fly, if the driving time is less than three
hours, and as a member of the KSL, he has
inherited the constraint that he must use an
American carrier for business travel.

In reality, our demo doesn’t provide much
to see. The user makes a request to the agent
through a user interface that is automatically
created from our DAML+OIL agent proce-
dures ontology, and the agent emails the user
the travel itinerary when it is done. For the pur-

poses of illustration, Figure 4 provides a win-
dow into what is happening behind the scenes.
It is a trace from the run of our augmented and
extended ConGolog interpreter, operating in
Quintus Prolog. The agent KB is represented
in a Prolog encoding of the situation calculus,
a translation of the Semantic Web service
markup relevant to the generic travel procedure
being called, together with Bob’s user con-
straint markup. We have defined a generic pro-
cedure for travel not unlike the one illustrated
in Figure 3b.

Arrow 1 points to the call to the ConGolog
procedure travel(user,origin,dest,dDate,rDate,purpose),
with the parameters instantiated as noted.
Arrow 2 shows the interpreter contacting OAA,
which sends a request to Yahoo Maps to exe-
cute the getDrivingTime(San Franciso,Monterey) service
Yahoo Maps provides. Yahoo Maps indicates
that the driving time between San Francisco
and Monterey is two hours. Because Bob has a
constraint that he wishes to drive if the driving
distance is less than three hours, booking a
flight is not desirable. Consequently, as de-
picted at Arrow 3, the agent elects to search for
an available car rental at the point of origin, San
Francisco. A number of available cars are re-
turned, and because Bob has no constraints that
affect car selection, the first car is selected at
Arrow 4. Arrow 5 depicts the call to OAA for
a hotel at the destination point, and so on. Our
agent technology goes on to complete Bob’s
travel arrangements, creating an expense claim
form for Bob and filling in as much informa-
tion as was available from the Web services.
The expense claim illustrates the agent’s abil-
ity to both read and write Semantic Web
markup. Finally, the agent sends an email mes-
sage to Bob, notifying him of his agenda.

To demonstrate the merits of our approach,
we often contrast such an execution of the
generic travel procedure with one a different
user called, with different user constraints.
The different user and constraints produce a
different search space, thus yielding a dif-
ferent sequence of Web services.

Related work
Our agent technology broadly relates to the

plethora of work on agent-based systems.
Three agent technologies that deserve men-
tion are the Golog family of agent technolo-
gies referenced earlier, the work of researchers
at SRI on Web agent technology,11 and the
softbot work developed at the University of
Washington.12 The last also used a notion of
action schemas to describe actions on the
Internet that an agent could use to achieve a

52 computer.org/intelligent IEEE INTELLIGENT SYSTEMS

| ?– travel (‘Bob Chen‘, ‘09/02/00‘, ‘San Francisco‘, ‘Monterey‘, ‘DAML‘).
Contacting Web Service Broker:
 Request Driving Time [San Francisco] – [Monterey]
Result 2

Contacting Web Service Broker:
 Request Car Info in [San Francisco]
Result
 HERTZShuttle to Car CounterEconomy Car Automati…
 ACEOff Airport, Shuttle ProvidedEconomy Car Aut…
 NATIONALShuttle to Car CounterEconomy Car Auto…
 FOXOff Airport, Shuttle ProvidedMini Car Automa…
 PAYLESSOff Airport, Shuttle ProvidedMini Car Au…
 ALL INTLOff Airport, Shuttle ProvidedEconomy Ca…
 HOLIDAYOff Airport, Shuttle ProvidedEconomy Car…
 ABLE RENTOff Airport, Shuttle ProvidedCompact C…

Select
 HERTZ (San Francisco Airport), Location: Shuttle to Car Counter, Economy C
ar Automatic with Air Conditioning, Unlimited Mileage

Contact Web Service Broker:
 Request Hotel Info in [Monterey]
Result
 TravelodgeMonterey, CA55 Rooms / 2 FloorsNo…
 EconolodgesMonterey, CA47 Rooms / 2 Floors 1…
 Lexington SerciesMonterey, CA52 RoomsNot A…
 Ramada InnsMonterey, CA47 RoomsNot Availabl…
 Best Western IntlMonterey, CA43 Rooms / 3 Floo…
 Motel 6Monterey, CA52 Rooms / 2 FloorsNot A…
 Villager LodgeMonterey, CA55 Rooms / 2 Floors<…
 Best Western IntlMonterey, CA34 Rooms / 2 Flo…

1
xterm

2

3

4

5

Figure 4. Agent interacting with Web services through OAA.

goal. Also of note is the Ibrow system, an intel-
ligent brokering service for knowledge-com-
ponent reuse on the Web.13 Our work is simi-
lar to Ibrow in the use of an agent brokering
system and ontologies to support interaction
with the Web. Nevertheless, we are focusing
on developing and exploiting Semantic Web
markup, which will provide us with the KB
for our agents. Our agent technology performs
automated service composition based on this
markup. This is a problem the Ibrow commu-
nity has yet to address.

The DAML family of semantic Web
markup languages will enable Web

service providers to develop semantically
grounded, rich representations of Web services
that a variety of different agent architectures
and technologies can exploit to a variety of dif-
ferent ends. The markup and agent technology
presented in this article is but one of many pos-
sible realizations. We are building on the mark-
up presented here to provide a core set of
Web service markup language constructs in a
language we’re calling DAML-S. We’re work-
ing in collaboration with SRI, Carnegie Mel-
lon University, Bolt Baranek and Newman,
and Nokia, and we’ll eventually publish the
language at www.daml.org. Our agent tech-
nology for automating Web service composi-
tion and interoperation is also fast evolving.
We’ll publicize updates at www.ksl.stanford.
edu/projects/DAML/webservices.

Acknowledgments
We thank Richard Fikes and Deborah McGuin-

ness for useful discussions related to this work; Ron
Fadel and Jessica Jenkins for their help with ser-
vice ontology construction; and the reviewers,
Adam Cheyer and Karl Pfleger for helpful com-
ments on a draft of this article. We also thank the
Cognitive Robotics Group at the University of
Toronto for providing an initial ConGolog inter-
preter that we have extended and augmented, and
SRI for the use of the Open Agent Architecture soft-
ware. Finally, we gratefully acknowledge the finan-
cial support of the US Defense Advanced Research
Projects Agency DAML Program #F30602-00-2-
0579-P00001.

References

1. J. Hendler, “Agents and the Semantic Web,”
IEEE Intelligent Systems, vol. 16, no. 2,
Mar./Apr. 2001, pp. 30–37.

2. T. Berners-Lee, M. Fischetti, and T. M. Der-
touzos, Weaving the Web: The Original
Design and Ultimate Destiny of the World
Wide Web by its Inventor, Harper, San Fran-
cisco, 1999.

3. F. van Harmelen and I. Horrocks, “FAQs on
OIL: The Ontology Inference Layer,” IEEE
Intelligent Systems, vol. 15, no. 6, Nov./Dec.
2000, pp. 69–72.

4. J. Hendler and D. McGuinness, “The DARPA
Agent Markup Language,” IEEE Intelligent Sys-
tems, vol. 15, no. 6, Nov./Dec. 2000, pp. 72–73.

5. G. De Giacomo, Y. Lesperance, and H.
Levesque, “ConGolog, a Concurrent Pro-
gramming Language Based on the Situation
Calculus,” Artificial Intelligence, vols. 1–2,
no. 121, Aug. 2000, pp. 109–169.

6. K. Sycara et al., “Dynamic Service Match-
making among Agents in Open Information
Environments,” J. ACM SIGMOD Record,
vol. 28, no. 1, Mar. 1999, pp. 47–53.

7. M. Ghallab et al., PDDL: The Planning
Domain Definition Language, Version 1.2,
tech. report CVC TR–98–003/DCS TR–1165,
Yale Center for Computational Vision and
Control,Yale Univ., New Haven, Conn., 1998.

8. S. McIlraith, “Modeling and Programming
Devices and Web Agents,” to be published in
Proc. NASA Goddard Workshop Formal

Approaches to Agent-Based Systems, Lecture
Notes in Computer Science, Springer-Verlag,
New York, 2001.

9. S. McIlraith and T.C. Son, “Adapting Golog
for Programming the Semantic Web,” to be
published in Proc. 5th Symp. on Logical For-
malizations of Commonsense Reasoning
(Common Sense 2001), 2001.

10. D.L. Martin, A.J. Cheyer, and D.B. Moran,
“The Open Agent Architecture:A Framework
for Building Distributed Software Systems,”
Applied Artificial Intelligence, vol. 13, nos.
1–2, Jan.–Mar. 1999, pp. 91–128.

11. R. Waldinger, “Deductive Composition of
Web Software Agents,” to be published in
Proc. NASA Goddard Workshop Formal
Approaches to Agent-Based Systems, Lecture
Notes in Computer Science, Springer-Verlag,
New York, 2001.

12. O. Etzioni and D. Weld, “A Softbot-Based
Interface to the Internet,” Comm. ACM, July
1994, Vol. 37, no. 7, pp. 72–76.

13. V. R. Benjamins et al., “IBROW3: An Intel-
ligent Brokering Service for Knowledge-
Component Reuse on the World Wide Web,”
Proc. 11th Banff Knowledge Acquisition for
Knowledge-Based System Workshop (KAW
’98), Banff, Canada, 1998; http://spuds.cpsc.
ucalgary.ca/KAW/KAW98/KAW98Proc.
html (current 20 Mar. 2001).

MARCH/APRIL 2001 computer.org/intelligent 53

Sheila A. McIlraith is a research scientist in Stanford University’s Knowl-
edge Systems Laboratory and the project lead on the KSL’s DAML Web Ser-
vices project. Her research interests include knowledge representation and
reasoning techniques for the Web, for modeling, diagnosing, and controlling
static and dynamical systems, and for model-based programming of devices
and agents. She received her PhD in computer science from the University
of Toronto. Contact her at sam@ksl.stanford.edu.

Tran Cao Son is an assistant professor in the Department of Computer Sci-
ence at New Mexico State University. His research interests include knowl-
edge representation, autonomous agents, reasoning about actions and changes,
answer set programming and its applications in planning and diagnosis, model
based reasoning, and logic programming. Contact him at tson@cs.nmsu.edu.

Honglei Zeng is a graduate student in the Department of Computer Science
at Stanford University. He is also a research assistant in the Knowledge Sys-
tems Laboratory. His research interests include the Semantic Web, knowl-
edge representation, commonsense reasoning, and multiple agents systems.
Contact him at hlzeng@ksl.stanford.edu.

T h e A u t h o r s

