The Semantic

Web

Theauthorsproposethe
markup of Web services
inthe DAML family of
Semantic\Web markup
languages. Thismarkup
enablesawidevariety of
agent technologiesfor
automated WWeb service
discovery, execution,
composition, and
interoperation. The
authorspresent one
such technology for
automated WWeb service

composition.

Semantic Web Services

SheilaA. Mcllraith, Tran Cao Son, and Honglei Zeng, Sanford University

T he Web, once solely arepository for text and images, is evolving into a provider

of services—information-providing services, such asflight information providers,

temperature sensors, and cameras, and world-altering services, such as flight-booking

programs, sensor controllers, and a variety of e-commerce and business-to-business

applications. Web-accessible programs, databases,
sensors, and avariety of other physical devicesreal-
izethese services. In the next decade, computerswill
most likely be ubiquitous, and most deviceswill have
some sort of computer inside them. Vint Cerf, one
of the fathers of the Internet, views the population
of the Internet by smart devices as the harbinger of
anew revolution in Internet technol ogy.

Today’s Web was designed primarily for human
interpretation and use. Nevertheless, we are seeing
increased automation of Web service interoperation,
primarily in B2B and e-commerce gpplications. Gen-
erally, suchinteroperationisrealized through APIsthat
incorporate hand-coded information-extraction codeto
locate and extract content from the HTML syntax of a
Web page presentation layout. Unfortunately, when a
Web page changesits presentation layout, the APl must
be modified to prevent failure. Fundamental to having
computer programs or agents' implement reliable,
large-scaleinteroperation of Web servicesistheneed to
make such services computer interpretable—to create
a Semantic Web? of services whose properties, capa-
bilities, interfaces, and effectsare encoded in an unam-
biguous, machine-understandable form.

The realization of the Semantic Web is underway
with the development of new Al-inspired content
markup languages, such as OIL,> DAML+OIL
(Www.daml.org/2000/10/daml-ail), and DAML-L (the
last two are members of the DARPA Agent Markup
Language (DAML) family of languages).* Theselan-
guages have awell-defined semantics and enable the
markup and mani pulation of complex taxonomic and
logical relations between entities on the Web. A fun-

damental component of the Semantic Web will bethe
markup of Web servicesto makethem computer-inter-
pretable, use-apparent, and agent-ready. This article
addresses precisely this component.

We present an approach to Web service markup that
provides an agent-independent declarative API cap-
turing the data and metadata associated with a service
together with specifications of its properties and capa-
bilities, the interface for its execution, and the prereg-
uisites and consequences of its use. Markup exploits
ontologies to facilitate sharing, reuse, composition,
mapping, and succinct local Web service markup. Our
visonispartidly realized by Web servicemarkupina
didect of thenewly proposed DAML family of Seman-
tic Web markup languages.* Such so-called semantic
markup of Web services creates a distributed knowl-
edgebase. Thisprovidesameansfor agentsto populate
their local KBs so that they can reason about Web ser-
vicesto perform automatic\Web service discovery, exe-
cution, and composition and interoperation.

Toillustrate this claim, we present an agent tech-
nology based on reusable generic procedures and
customizing user constraintsthat exploitsand show-
cases our Web service markup. This agent technol-
ogy isrealized using the first-order language of the
situation calculus and an extended version of the
agent programming language ConGolog,> together
with deductive machinery.

Figure 1 illustrates the basic components of our
Semantic Web services framework. It is composed of
semantic markup of Web services, user congtraints, and
Web agent generic procedures. In addition to the
markup, our framework includesavariety of agent tech-

46

1094-7167/01/$10.00 © 2001 |EEE

IEEE INTELLIGENT SYSTEMS

nologies—specialized services that use an
agent broker to send requests for service to
appropriate Web services and to dispatch ser-
vice responses back to the agent.

Automating Web services

Torealizeour vision of Semantic\Web ser-
vices, we are creating semantic markup of
Web services that makes them machine
understandable and use-apparent. Wearea so
devel oping agent technology that exploitsthis
semantic markup to support automated Web
service composition and interoperability. Dri-
ving the development of our markup and
agent technology are the automation tasksthat
semantic markup of Web serviceswill enable
—in particular, servicediscovery, execution,
and composition and interoperation.

Automatic V\eb service discovery involves
automatically locating Web servicesthat pro-
vide a particular service and that adhere to
requested properties. A user might say, for
example, “Find aservicethat sdllsairlinetick-
ets between San Francisco and Toronto and
that accepts payment by Diner's Club credit
card” Currently, a human must perform this
task, first usng asearch enginetofind aservice
and then either reading the Web page associ-
ated with that service or executing the service
to seewhether it adheresto the requested prop-
erties. With semantic markup of services, we
can specify theinformation necessary for Web
service discovery as computer-interpretable
semantic markup at the service Web sites, and
a service registry or (ontology-enhanced)
search engine can automatically locate appro-
priate services.

Automatic Web service execution involves
acomputer program or agent automatically
executing an identified Web service. A user
could request, “Buy mean airlineticket from
www.acmetravel.com on UAL Flight 1234
from San Francisco to Toronto on 3 March.”
To execute a particular service on today’s
Web, such as buying an airline ticket, a user
generaly must go to theWeb site offering that
service, fill out aform, and click a button to
executethe service. Alternately, the user might
send an http request directly to the service
URL with the appropriate parameters en-
coded. Either caserequiresahuman to under-
stand what information isrequired to execute
theserviceandtointerpret theinformation the
servicereturns. Semantic markup of Web ser-
vices provides a declarative, computer-inter-
pretable APl for executing services. The
markup tellsthe agent what input isnecessary,
what information will bereturned, and how to

Web procedures
ontologies

Web service
ontologies

/
=

=

= E-E=

broker [~ E E E

Agent

==

Semantic markup of
personal or company

==

Semantic markup of
Web service sites

constraints and preferences

Email

/LL

Knowledge
base

Semantic-markup-enabled
agent technology

Figure 1. A framework for Semantic Web services.

execute—and potentially interact with—the
service automatically.

Automatic WWeb service composition and
interoperation involves the automatic selec-
tion, composition, and interoperation of
appropriate Web services to perform some
task, given a high-level description of the
task’s objective. A user might say, “Makethe
travel arrangements for my 1JCAI 2001 con-
ferencetrip.” Currently, if sometask requires
acomposition of Web servicesthat must inter-
operate, then the user must select the Web ser-
vices, manually specify the composition, en-
sure that any software for interoperation is
custom-created, and provide the input at
choice points (for example, selecting aflight
from among severa options). With semantic
markup of Web services, theinformation nec-
essary to select, compose, and respond to ser-
vicesisencoded at the service Web sites. We
can write software to mani pul ate thismarkup,
together with a specification of the task’s
objectives, to achieve the task automatically.
Service composition and interoperation lever-
age automatic discovery and execution.

Of these three tasks, none is entirely real-
izablewith today’sWeb, primarily because of
a lack of content markup and a suitable
markup language. Academic research on Web
service discovery is growing out of agent
matchmaking research such asthe Lark sys-
tem,® which proposes a representation for
annotating agent capabilities so that they can
be located and brokered. Recent industrial

efforts have focused primarily on improving
Web service discovery and aspects of service
execution through initiatives such asthe Uni-
versa Description, Discovery, and Integration
(UDDI) standard service registry; the XML-
based Web Service Description Language
(WSDL), released in September 2000 as a
framework-independent Web service descrip-
tion language; and ebXML, aninitiative of the
United Nationsand OA SIS (Organization for
the Advancement of Structured Information
Standards) to standardize a framework for
trading partner interchange.

E-business infrastructure companies are
beginning to announce platforms to support
somelevel of Web-service automation. Exam-
plesof such productsinclude Hewlett-Packard's
e-gpesk, adescription, registration, and dynamic
discovery platform for e-services, Microsoft's
NET and BizTak tools, Oracle€' sDynamic Ser-
vices Framework; IBM’sApplication Frame-
work for E-Business; and Sun’sOpen Network
Environment. VerticalNet Solutions, anticipat-
ing and wishing to accelerate the markup of
services for discovery, is building ontologies
and tools to organize and customize Web ser-
vicediscovery and—withitsOSM Platform—
is delivering an infrastructure that coordinates
Web services for public and private trading
exchanges.

What distinguishes our work in this arena
isour semantic markup of Web servicesinan
expressive semantic Web markup language
with awell-defined semantics. Our semantic

MARCH/APRIL 2001

computer.org/intelligent

47

The

Semantic Web

markup providesasemantic layer that should
comfortably sit on top of efforts such as
WSDL, enabling aricher level of description
and hence more sophisticated interactionsand
reasoning at the agent or applicationlevel. To
demonstrate this claim, we present agent
technology that performs automatic Web ser-
vice composition, an areathat industry isnot
yet tackling in any great measure.

Semantic Web service markup
Thethree automation taskswe' ve described
are driving the development of our semantic
Web servicesmarkup inthe DAML family of
markup languages. We are marking up

« Web services, such as Yahoo's driving
direction information service or United
Airlines' flight booking service;

* user and group constraintsand preferences,
such as a user’s—Ilet’s say Bob's—sched-
ule, that he prefersdriving over flying if the
driving time to his destination is less than
three hours, his use of stock quotes exclu-
sively from the E* Trade Web service, and
so forth; and

 agent procedures, which are (partial) com-
positions of existing Web services, designed
to perform a particular task and marked up
for sharing and reuse by groups of other
users. Examples include Bob's business
travel booking procedure or his friend’s
stock assessment procedure.

Our DAML markup providesadeclarative
representation of Web service and user con-
straint knowledge. (See the “The Case for
DAML” sidebar to learn why we chose the
DAML family of markup languages.) A key
feature of our markup is the exploitation of
ontologies, which DAML+OIL's roots in
descriptionlogics and frame systems support.

We use ontologies to encode the classes
and subclasses of conceptsand rel ations per-
taining to servicesand user constraints. (For
example, the service BuyUALTicket and Buy-
LufthansaTicket are subclasses of the service
BuyAirlineTicket, inheriting the parameters cus-
tomer, origin, destination, and so forth). Domain-
independent Web service ontol ogies are aug-
mented by domain-specific ontologies that
inherit concepts from the domain-indepen-
dent ontologiesand that additionally encode
concepts that are specific to the individual
Web service or user. Using ontologies
enablesthe sharing of common concepts, the
specialization of these concepts and vocab-
ulary for reuse across multiple applications,

the mapping of concepts between different
ontologies, and the composition of new con-
cepts from multiple ontologies. Ontologies
support the devel opment of succinct service-
or user-specific markup by enabling anindi-
vidual service or user to inherit much of its
semantic markup from ontologies, thus
requiring only minimal markup at the Web
site. Most importantly, ontologies can give
semantics to markup by constraining or
grounding its interpretation. Web services
and users need not exploit Web service
ontologies, but we foresee many domains
where communities will want to agree on a
standard definition of terminology and
encodeit in an ontology.

DAML markup of Web services
Collectively, our markup of Web services
provides

e declarative advertisements of service
properties and capabilities, which can be
used for automatic service discovery;

 declarative APIs for individual services
that are necessary for automatic service
execution; and

« declarative specifications of the prerequi-
sites and consequences of individua ser-
vice use that are necessary for automatic
service composition and interoperation.

The semantic markup of multiple\Web ser-
vices collectively forms a distributed KB of
Web services. Semantic markup can populate
detailed registries of the properties and capa-
bilities of Web servicesfor knowledge-based
indexing and retrieval of Web services by
agent brokers and humans alike. Semantic
markup can also populate individual agent
KBs, to enable automated reasoning about
Web services.

Our Web service markup comprisesanum-
ber of different ontologies that provide the
backbonefor our Web service descriptions. We
define the domain-independent class of ser-
vices, Service, and divideit into two subclasses,
PrimitiveService and ComplexService. In the context
of the Web, a primitive service is an individ-
ual Web-executable computer program, sen-
sor, or device that does not call another Web
service. There is no ongoing interaction
between the user and aprimitive service. The
user or agent callsthe service, and the service
returns aresponse. An example of aprimitive
service is a Web-accessible program that
returnsapostal code, givenavalid address. In
contrast, a complex service is composed of

multiple primitive services, often requiring an
interaction or conversation between the user
and services, so that the user can make deci-
sions. An example might be interacting with
www.amazon.com to buy abook.

Domain-specific Web service ontologies
are subclasses of these general classes. They
enable an individual service to inherit
shared concepts, and vocabulary in a partic-
ular domain. The ontology being used is spec-
ified inthe Web site markup and then simply
refined and augmented to provide service-
specific markup. For example, we might
define an ontology containing the class Buy,
with subclass BuyTicket, which has subclasses
BuyMovieTicket, BuyAirlineTicket, and so forth. Buy-
AirlineTicket has subclasses BuyUALTicket, Buy-
LufthansaTicket, and so on. Each serviceiseither
a PrimitiveService or a ComplexService. Associated
with each service is a set of Parameters. For
example, the class Buy will have the parame-
ter Customer. BuyAirlineTicket will inherit the Cus-
tomer parameter and will also have the para-
meters Origin, Destination, DepartureDate, and so on.
We constructed domain-specific ontologies
to describe parameter values. For example,
we restricted the val ues of Origin and Destination
to instances of the class Airport. BuyUALTicket
inherits these parameters, further restricting
them to Aiports whose property Airlines includes
UAL. These value restrictions provide an
important way of describing Web service
properties, which supports better brokering
of services and simple type checking for our
declarative APIs. In addition, we have used
these restrictions in our agent technology to
create customized user interfaces.

Markup for Web service discovery. To auto-
mate Web service discovery, we associate
properties with services that are relevant to
automated service classification and selec-
tion. In the case of BuyUALTicket, these would
include service-independent property types
such asthe company name, the service URL,
aunique service identifier, the intended use,
and soforth. They would asoinclude service-
specific property types such asvalid methods
of payment, travel bonus plans accepted, and
soforth. Thismarkup, together with certain of
the properties specified | ater, collectively pro-
vides a declarative advertisement of service
propertiesand capabilities, whichiscomputer
interpretable and can be used for automatic
service discovery.

Markup for Web service execution. To auto-
mate Web service execution, markup must

48

computer.org/intelligent

IEEE INTELLIGENT SYSTEMS

The Case for DAML

In recent years, several markup languages have been devel-
oped with a view to creating languages that are adequate for
realizing the Semantic Web. The construction of these lang-
uages is evolving according to a layered approach to language
development.'

XML was the first language to separate the markup of Web
content from Web presentation, facilitating the representa-
tion of task- and domain-specific data on the Web. Unfortu-
nately, XML lacks semantics. As such, computer programs can-
not be guaranteed to determine the intended interpretation
of XML tags. For example, a computer program would not be
able to identify that <SALARY> data refers to the same informa-
tion as <WAGE> data, or that the <DUE-DATE> specified at a Web
service vendor’s site might be different from the <DUE-DATE> at
the purchaser’s site.

The World Wide Web Consortium developed the resource
description framework (RDF)? as a standard for metadata.

The goal was to add a formal semantics to the Web, defined

on top of XML, to provide a data model and syntax convention
for representing the semantics of data in a standardized inter-
operable manner. It provides a means of describing the relation-
ships among resources (basically anything nameable by a URI)

in terms of named properties and values. The RDF working
group also developed RDF Schema, an object-oriented type sys-
tem that can be effectively thought of as a minimal ontology-
modeling language. Although RDF and RDFS provide good
building blocks for defining a Semantic Web markup language,
they lack expressive power. For example, you can‘t define prop-
erties of properties, necessary and sufficient conditions for class
membership, or equivalence and disjointness of classes. Further-
more, the only constraints expressible are domain and range
constraints on properties. Finally, and perhaps most importantly,
the semantics remains underspecified.

Recently, there have been several efforts to build on RDF
and RDFS with more Al-inspired knowledge representation
languages such as SHOE,> DAML-ONT,* OIL,> and most recently
DAML+OIL. DAML+OIL is the second in the DAML family of
markup languages, replacing DAML-ONT as an expressive ontol-
ogy description language for markup. Building on top of RDF
and RDFS, and with its roots in Al description logics, DAML+OIL
overcomes many of the expressiveness inadequacies plaguing
RDFS and most important, has a well-defined model-theoretic
semantics as well as an axiomatic specification that determines
the language’s intended interpretations. DAML+OIL is unam-
biguously computer-interpretable, thus making it amenable to

agent interoperability and automated-reasoning techniques,
such as those we exploit in our agent technology.

In the next six months, DAML will be extended with the addi-
tion of DAML-L, a logical language with a well-defined seman-
tics and the ability to express at least propositional Horn clauses.
Horn clauses enable compact representation of constraints and
rules for reasoning. Consider a flight information service that
encodes whether a flight shows a movie. One way to do this is
to create a markup for each flight indicating whether or not it
does. A more compact representation is to write the constraint
flight-over-3-hours — movie and to use deductive reasoning to infer if a
flight will show a movie. This representation is more compact,
more informative, and easier to modify than an explicit enumer-
ation of individual flights and movies. Similarly, such clauses can
represent markup constraints, business rules, and user prefer-
ences in a compact form.

DAML+OIL and DAML-L together will provide a markup lan-
guage for the Semantic Web with reasonable expressive power
and a well-defined semantics. Should further expressive power
be necessary, the layered approach to language development
lets a more expressive logical language extend DAML-L or act
as an alternate extension to DAML+OIL. Because DAML-L has
not yet been developed, our current Web service markup is in a
combination of DAML+OIL and a subset of first-order logic. Our
markup will evolve as the DAML family of languages evolves.

1. D.Fensel, “The Semantic Web and Its Languages,” IEEE Intelligent
Systems, vol. 15, no. 6, Nov./Dec. 2000, p. 67-73.

2. 0. Lassila and R. Swick, Resource Description Framework (RDF)
Model and Syntax Specification, W3C Recommendation, World
Wide Web Consortium, Feb. 1999; www.w3.0rg/TR/REC-rdf-syntax
(current 11 Apr. 2001).

3. S.Luke and J. Heflin, SHOE 1.01. Proposed Specification,
www.cs.umd.edu/projects/plus/SHOE/spec1.01.html, 2000 (current
20 Mar. 2001).

4. J.Hendler and D. McGuinness, “The DARPA Agent Markup
Language,” IEEE Intelligent Systems, vol. 15, no. 6, Nov./Dec. 2000,
pp. 72-73.

5. F.van Harmelen and I. Horrocks, “FAQs on OIL: The Ontology Infer-
ence Layer,” IEEE Intelligent Systems, vol. 15, no. 6, Nov./Dec. 2000,
pp. 69-72.

enable a computer agent to automatically
construct and execute aWeb service request
and interpret and potentially respond to the
service's response. Markup for execution
requires a dataflow model, and we use both
a function metaphor and a process or con-
versation model to realize our markup. Each
primitive service is conceived as afunction
with Input values and potentially multiple
alternative Output values. For example, if the
user orders a book, the response will differ
depending on whether the book isin stock,
out of stock, or out of print.

Complex servicesare conceived asacom-
position of functions (services) whose output

might require an exchange of information
between the agent and an individual service.
For example, acomplex service that books a
flight for a user might involve first finding
flightsthat meet the user’s request, then sus-
pending until the user selectsoneflight. Com-
plex services are composed of primitive or
complex servicesusing typical programming
languages and business-process modeling
language constructs such as Sequence, lteration,
If-then-Else, and so forth. Thismarkup provides
declarative APIsfor individual Web services
that are necessary for automatic Web service
execution. It additionally provides a process
dataflow model for complex services. For an

agent to respond automatically to acomplex
service execution—that is, to automatically
interoperatewith that service—it will require
some of the information encoded for auto-
matic composition and interoperation.

Markup for Web service composition. The
function metaphor used for automatic Web ser-
vice execution providesinformation about data
flow, but it does not provideinformation about
what the Web service actually does. To auto-
mate service composition, and for servicesand
agents to interoperate, we must also encode
how the service affects the world. For exam-
ple, when auser visitswww.amazon.com and

MARCH/APRIL 2001

computer.org/intelligent

49

The

Semantic Web

successfully executes the BuyBook service, she
knows she has purchased abook, that her credit
card will be debited, and that she will receive
abook at the address she provided. Such con-
sequences of Web service execution are not
part of the markup nor part of the function-
based specification provided for automatic
execution. To automate \Web service composi-
tion and interoperation, or even to select an
individual serviceto meet some objective, we
must encode prerequisites and consequences
of Web service execution for computer use.

Our DAML markup of Web services for
automatic composition and interoperability is
built on an Al-based action metaphor. We con-
ceive each Web serviceasan action—either a
PrimitiveAction or a ComplexAction. Primitive actions
areinturn concelved asworld-altering actions
that changethe state of theworld, such asdeb-
iting the user’scredit card, booking theuser a
ticket, and so forth; asinformation-gathering
actionsthat change the agent’ s state of knowl-
edge, so that after executing the action, the
agent knows a piece of information; or as
some combination of the two.

An advantage of exploiting an action
metaphor to describeWeb servicesisthat it lets
us bring to bear the vast Al research on rea
soning about action, to support automated rea-
soning tasks such as\Web service composition.
In developing our markup, wechoosetoremain
agnostic with respect to an action representa-
tion formalism. In the Al community, thereis
widespread disagreement over the best action
representation formalism. As a consequence,
different agentsusevery different internd rep-
resentations for reasoning about and planning
sequencesof actions. The planning community
has addressed thislack of consensus by devel-
oping a specification language for describing
planning domains—Plan Domain Description
Language (PDDL).” We adopt this language
here, specifying each of our Web servicesin
terms of PDDL-inspired Parameters, Preconditions,
and Effeds. The Input and Ouiput necessary for
automatic Web service execution also play the
roleof KnowledgePreconditions and KnowledgeEffects for
the purposes of Web service composition and
interoperation. We assume, asin the planning
community, that users will compile this gen-
erd representationinto an actionformalismthat
best suits their reasoning needs. Trandators
dready exist from PDDL to avariety of differ-
entAl action formalisms.

Complex actions, like complex services, are
compositionsof individua services, however,
dependencies between these compositionsare
predicated on state rather than on data, asis

the case with the execution-motivated markup.
Complex actions are composed of primitive
actions or other complex actions using typi-
cal programming languages and business-
process modeling-language constructs such
asSequence, Parallel, If-then-Else, While, and so forth.

DAML markup of user constraints
and preferences
Our visionisthat agentswill exploit users

constraints and preferencesto help customize
users requestsfor automatic Web service dis-
covery, execution, or composition and inter-
operation. Examples of user constraints and
preferences include user Bob's schedule, his
travel bonuspoint plans, that he preferstodrive
if thedriving timeto hisdestination islessthan

0ur vision is thaf agents will exploit
Users” constraints and preferences
to help customize users' requests

for aufomafic Web service
discovery, execufion, or
composition and interoperation.

three hours, that he likes to get stock quotes
from the E* Trade Web service, that his com-
pany requires all domestic business travel to
bewith aparticular set of carriers, and soforth.
The actual markup of user constraintsisrela-
tively straightforward, given DAML-L. Wecan
expressmost constraints asthese Horn clauses
(seethesidebar), and ontologies|et usersclas-
sify, inherit, and share constraints. Inheriting
terminology from Web service ontologies
ensures, for example, that Bob's constraint
about DrivingTime isenforced by determining the
value of DrivingTime from a servicethat usesthe
same notion of DrivingTime. More challenging
than the markup itself isthe agent technology
that will appropriately exploit it.

DANML-enabled agent technology

Our semantic markup of Web services
enablesawide variety of agent technologies.
Here, we present an agent technology we are
developing that exploits DAML markup of
Web servicesto perform automated \Web ser-
vice composition.

Consider the example task given earlier:
“Makethetravel arrangementsfor my [JCAI
2001 conferencetrip.” If youwereto perform
thistask using services available on the Web,
you might first find the IJCAI 2001 confer-
ence Web page and determine the confer-
ence'slocation and dates. Based on the loca-
tion, you would choose the most appropriate
mode of trangportation. If traveling by air, you
might then check flight scheduleswith oneor
more Web services, book flights, and so on.

Although the entire procedure is lengthy
and somewhat tedious to perform, the aver-
age person could easily describe how to make
your travel arrangements. Nevertheless, it's
not easy to get someone €else to make the
arrangements for you. What makes this task
difficult is not the basic steps but the need to
make decisionsto customize the generic pro-
cedure to enforce the traveler’s constraints.
Constraints can be numerous and conse-
quently difficult for another persontokeepin
mind and satisfy. Fortunately, enforcing com-
plex congtraintsis something acomputer does
well.

Our objectiveisto develop agent technol-
ogy that will perform thesetypes of tasksauto-
matically by exploiting DAML markup of
Web servicesand of user constraintsand pref-
erences. We argue that many of the activities
users might wish to perform on the Semantic
Web, within the context of their workplace or
home, can be viewed as customizations of
reusable, high-level generic procedures. Our
visionisto construct such reusable, high-level
generic procedures and to represent them as
distinguished servicesin DAML using asub-
set of the markup designed for complex ser-
vices. We also hope to archive them in
sharable generic procedures ontol ogies so that
multiple users can access them. Generic pro-
cedures are customi zed with respect to users
constraints, using deductive machinery.

Generic procedures and customiz-
ing user constraints

We built our research on model-based pro-
gramming® and on research into the agent
programming language Golog and its vari-
ants, such as ConGolog.® Our goa was to
provide a DAML-enabled agent program-
ming capability that supportswriting generic
procedures for Web service-based tasks.

M odé-based programs compriseamodel—
inthiscase, theagent’sK B—and aprogram—
the generic procedure we wish to execute. We
arguethat the situation calculus (alogical lan-
guage for reasoning about action and change)

50

computer.org/intelligent

IEEE INTELLIGENT SYSTEMS

Figure 2. The tree of situations.

and ConGologP® provideacompelling language
for redlizing our agent technology. When auser
requestsageneric procedure, suchasageneric
travel arrangements procedure, the agent pop-
ulatesitsloca KB with the subset of the PDDL-
inspired DAML Web servicemarkup thet isrel-
evant to the procedure. It aso adds the user’s
constraints to its KB. Exploiting our action
metaphor for Web services, the agent KB pro-
vides alogica encoding of the preconditions
and effects of the Web service actionsin the
language of the situation calculus.

M odel-based programs, such asour generic
procedures, are written in ConGolog without
prior knowledge of what specific servicesthe
agent will useor of how exactly to usetheavail -
able services. As such, they capture what to
achieve but not exactly how to do it. They use
procedura programming language constructs
(if-then-else, while, and so forth) composed with
concepts defined in our DAML service and
constraints ontologies to describe the proce-
dure. The agent’s model-based program is not
executableasis. Wemust deductively instanti-
ateit in the context of the agent’s KB, which
includes properties of the agent and its user,
properties of the specific servicesweareusing,
and the state of the world. We perform the
ingtantiation by using deductive machinery. An
instantiated program is ssmply a sequence of
primitive actions (individual Web services),
which ConGolog interprets and sends to the
agent broker asarequest for service. Thegreat
advantage of these generic proceduresis that
the samegeneric procedure, called with differ-
ent parameters and user constraints, can gen-
erate very different sequences of actions.

ConGolog

ConGologisahigh-level logic programming
language developed at the University of
Toronto. Its primary useisfor robot program-

ming and to support high-level robot task
planning. ConGolog ishbuilt ontop of situ-
ation calculus. In situation calculus, the
world is concelved as atree of situations,
gtarting at aninitia Stuation, S, and evolv-
ing to anew sSituation through the perfor-
mance of an action a (for example, Web
services such as BuyUALTicket{origin,dest, date)).
Thus, astuation sisahistory of theactions

(a)

(b)

Primitive acfion: a

Test of fruth: ¢?

Sequence: (O1; &2)

Nondeterministic choice between acfions: (&1 | &2)
Nondeterministic choice of arguments: 77x.6
Nondeterministic iteration: &*

Conditiona: if ¢ then &1 else &2 endlf

Loop: while ¢ do dendWhile

Procedure: proc P(v) SendProc

while Ti.(hotel(x) D goodLoc(x, dest)) do
checkAvailability(x,dDate,rDate)
endWhile

if - hotelAvailable(dest, dDate,rDate) then
BookB&B(cust,dest dDate,rDate)
endlf

proc Travel(cust,origin, dest, dDate, rDate, purpose);
If registrationRequired then Register endlf;
BookTranspo(cust,origin, dest, dDate,rDate);
BookAccommodations(cust, dest, dDate, rDate);
UpdateExpenseClaim(cust);
Inform(cust)

endProc

performed from S,. The state of the world
isexpressed intermsof relationsand func-
tions (so-called fluents) that aretrueor false
or have aparticular vduein asituation, s
(for example, flightAvailable(origin,dest, date,s)).

Figure 2 illustrates the tree of situations
induced by a situation calculus theory with
actions a,, ...,a,(ignore the x’s for the time
being). Thetreeisnot actually computed, but
it reflects the search space the situation cal-
culusK B induces. We could have performed
deductive plan synthesis to plan sequences
of Web service actions over this search space,
but instead, we devel oped generic procedures
in ConGolog.

ConGolog provides a set of extralogical
procedural programming constructs for
assembling primitive and complex situation
calculusactionsinto other complex actions.
Let &, and &, be complex actions, and let ¢
and a be so-called pseudo fluents and pseudo
actions, respectively—that is, a fluent or
action in the language of situation calculus
with all its situation arguments suppressed.
Figure 3ashows asubset of the constructsin
the ConGolog language.

A user can employ these constructs to
write generic procedures, which are complex
actionsin ConGolog. Theinstruction set for
these complex actionsis simply the general
Web services (for example, BookAirlineTicket) or
other complex actions. Figure 3b gives exam-
ples of ConGolog statements.

To instantiate a ConGolog program in the

Figure 3. (a) A subset of the constructs in the
ConGolog language. (b) Examples of
ConGolog statements.

context of aK B, the abbreviation Do(d,s,s) is
defined. It says that Do(4,s,s’) holds when-
ever s’ is aterminating situation following
the execution of complex action J, startingin
situation s. Given the agent KB and ageneric
procedure 4, we can instantiate dwith respect
to the KB and the current situation S, by
entailing abinding for the situation variable
s. Because situations are simply the history
of actionsfrom S, the binding for sdefinesa
sequence of actions that leads to successful
termination of the generic procedure d:

KB 8 (s).Do(d, S, 9)

Itisimportant to observethat ConGolog pro-
grams—and hence our generic procedures—
are not programs in the conventional sense.
Although they have the complex structure of
programs—including loops, if-then-el se state-
ments, and so forth—they differ inthat they are
not necessarily deterministic. Rather than nec-
essarily dictating aunique sequence of actions,
ConGolog programsserveto add temporal con-
sraintsto the situation tree of aKB, as Figure
2 depicts. As such, they eliminate certain
branches of theSituation tree (designated by the
x’s), reducing the size of the search space of
situationsthat instantiate the generic procedure.

MARCH/APRIL 2001

computer.org/intelligent

51

Result 2

@ Contacting Web Service Broker:
Result

ACE0ff Airport,

FOX0ff Airport,
PAYLESSOff Airport,

HOLIDAYOff Airport,

@ Select

HERTZ (San Francisco Airport),

@ Contact Web Service Broker:

Result

| ?- travel (’‘Bob Chen’, ‘09/02/00‘, ‘San Francisco’,
Contacting Web Service Broker:

Request Driving Time [San Francisco] - [Monterey]

Request Car Info in [San Francisco]

HERTZShuttle to Car CounterEconomy Car Automati..
Shuttle ProvidedEconomy Car Aut..
NATIONALShuttle to Car CounterEconomy Car Auto..
Shuttle ProvidedMini Car Automa..
Shuttle ProvidedMini Car Au..
ALL INTLOff Airport, Shuttle ProvidedEconomy Ca..
Shuttle ProvidedEconomy Car..
ABLE RENTOff Airport, Shuttle ProvidedCompact C..

Location: Shuttle to Car Counter, Economy C
ar Automatic with Air Conditioning, Unlimited Mileage

Request Hotel Info in [Monterey]

TravelodgeMonterey, CA55 Rooms / 2 FloorsNo..
EconolodgesMonterey, CA47 Rooms / 2 Floors 1.
Lexington SerciesMonterey, CA52 RoomsNot A..

Ramada InnsMonterey, CA47 RoomsNot Availabl..
Best Western IntlMonterey, CA43 Rooms / 3 Floo..
Motel 6Monterey, CA52 Rooms / 2 FloorsNot A..
Villager LodgeMonterey, CA55 Rooms / 2 Floors<..
Best Western IntlMonterey, CA34 Rooms / 2 Flo..

I

‘Monterey’, ‘DAML’).

Figure 4. Agent interacting with Web services through OAA.

The Desirable predicate, Desirable(a,s),
which weintroduced into ConGolog to incor-
porate user constraints, also further reducesthe
treeto those situationsthat are desirableto the
user. Because generic procedures and cus-
tomizing user constraints smply serveto con-
strainthe possible evolution of actions, depend-
ing on how they are specified, they can play
different roles. At oneextreme, thegeneric pro-
cedure simply constrains the search space
required in planning. At the other extreme,
a generic procedure can dictate a unique
sequence of actions, much in the way atradi-
tional program might. Weleveragethisnonde-
terminism to describe generic procedures that
havetheleaway to berelevant to abroad range
of users, while at the same time being cus-
tomizable to reflect the desires of individual
users. Wecontragt thisto atraditiona procedurd
program that would have to be explicitly mod-
ified to incorporate unanticipated constraints.

Implementation

To implement our agent technology, we
started with an implementation of an online
ConGolog interpreter in Quintus Prolog 3.2.5
We augmented and extended this interpreter
in avariety of ways (discussed further else-
where®). Someof theissueswededlt with were
balancing the offline search for an instantia-
tion of ageneric procedurewith online execu-
tion of information-gathering Web services,
because they help to further constrain the
search space of possible solutions. We added
new constructs to the ConGolog language to
enable moreflexible encoding of generic pro-
cedures, and we incorporated users cus-
tomizing congtraintsinto ConGolog by adding
the Desirable predicate mentioned earlier.

We also modified the interpreter to com-
municate with the Open Agent Architecture
agent brokering system.’® OAA sendsrequests
to appropriate Web services and dispatches
responses to the agents. When the Semantic
Web isareality, Web serviceswill communi-
cate through DAML. Currently, we must
trandate our markup (DAML+OIL and asub-
set of first-order logic) back and forth to
HTML through a set of Java programs. We
use aninformation extraction program, World
Wide Web Wrapper Factory (http://db.cis.
upenn.edu/W4F), to extract the information
Web servicescurrently produceinHTML. All
information-gathering servicesare performed
this way. For obvious practical and financial
reasons, world-altering aspectsof servicesare
not actually executed.

Example

Here, we illustrate the execution of our
agent technology with a generic procedure
for making travel arrangements. Let's say
Bob wants to travel from San Francisco to
Monterey on Knowledge Systems Lab busi-
ness with the DARPA-funded DAML re-
search project. He has two constraints—one
personal and oneinherited from the KSL, to
which he belongs. He wishes to drive rather
than fly, if the driving timeislessthan three
hours, and as a member of the KSL, he has
inherited the constraint that he must use an
American carrier for businesstravel.

In redlity, our demo doesn’t provide much
to see. The user makes arequest to the agent
through a user interface that is automatically
created from our DAML+OIL agent proce-
dures ontology, and the agent emails the user
thetravel itinerary whenitisdone. For the pur-

poses of illustration, Figure 4 provides awin-
dow into what ishappening behind the scenes.
Itisatracefrom therun of our augmented and
extended ConGolog interpreter, operating in
Quintus Prolog. The agent KB is represented
in aProlog encoding of the situation calculus,
a tranglation of the Semantic Web service
markup relevant to thegenerictravel procedure
being called, together with Bob's user con-
straint markup. We have defined ageneric pro-
cedure for travel not unlike the oneillustrated
in Figure 3b.

Arrow 1 pointsto the call to the ConGolog
procedure travel(user,origin,dest,dDate, rDate, purpose),
with the parameters instantiated as noted.
Arrow 2 showstheinterpreter contacting OAA,
which sends a request to Yahoo Mapsto exe-
cute thegetDrivingTime(San Franciso,Monterey) service
Yahoo Maps provides. Yahoo Mapsindicates
that the driving time between San Francisco
and Monterey istwo hours. BecauseBob hasa
congtraint that hewishesto driveif thedriving
distance is less than three hours, booking a
flight is not desirable. Consequently, as de-
picted at Arrow 3, the agent el ectsto search for
anavailablecar rentd at the point of origin, San
Francisco. A number of available cars are re-
turned, and because Bob hasno constraintsthat
affect car selection, thefirst car is selected at
Arrow 4. Arrow 5 depictsthe call to OAA for
ahotel at the destination point, and so on. Our
agent technology goes on to complete Bob's
travel arrangements, creeting an expenseclaim
form for Bob and filling in as much informa-
tion as was available from the Web services.
The expense claim illustrates the agent’s abil -
ity to both read and write Semantic Web
markup. Finally, the agent sendsan email mes-
sageto Baob, notifying him of hisagenda.

To demonstrate the merits of our approach,
we often contrast such an execution of the
generictravel procedurewith oneadifferent
user called, with different user constraints.
The different user and constraints produce a
different search space, thus yielding a dif-
ferent sequence of Web services.

Related work

Our agent technology broadly relatesto the
plethora of work on agent-based systems.
Three agent technologies that deserve men-
tion are the Golog family of agent technolo-
giesreferenced earlier, thework of researchers
at SRI on Web agent technology,* and the
softbot work developed at the University of
Washington.12 The last also used a notion of
action schemas to describe actions on the
Internet that an agent could use to achieve a

52

computer.org/intelligent

IEEE INTELLIGENT SYSTEMS

god. Also of noteisthe lbrow system, anintel-
ligent brokering servicefor knowledge-com-
ponent reuse on the Web.13 Our work issimi-
lar to Ibrow in the use of an agent brokering
system and ontologies to support interaction
with the Web. Nevertheless, we are focusing
on developing and exploiting Semantic Web
markup, which will provide us with the KB
for our agents. Our agent technology performs
automated service composition based on this
markup. Thisisaproblem the lbrow commu-
nity hasyet to address.

T he DAML family of semantic Web
markup languages will enable Web
service providers to develop semanticaly
grounded, rich representations of Web services
that a variety of different agent architectures
and technologiescan exploit to avariety of dif-
ferent ends. The markup and agent technology
presented in thisarticleisbut one of many pos-
siblerealizations. Weare building on the mark-
up presented here to provide a core set of
Web service markup language constructsin a
languagewe recalling DAML-S. We' rework-
ing in collaboration with SRI, Carnegie Mel-
lon University, Bolt Baranek and Newman,
and Nokia, and we' [l eventually publish the
language at www.daml.org. Our agent tech-
nology for automating Web service composi-
tion and interoperation is also fast evolving.
WEe'll publicize updates at www.kdl.stanford.
edu/projectsDAM L /webservices.

Acknowledgments

We thank Richard Fikes and Deborah McGuin-
nessfor useful discussionsrelated to thiswork; Ron
Fadel and Jessica Jenkins for their help with ser-
vice ontology construction; and the reviewers,
Adam Cheyer and Karl Pfleger for helpful com-
ments on adraft of thisarticle. We also thank the
Cognitive Robotics Group at the University of
Toronto for providing an initial ConGolog inter-
preter that we have extended and augmented, and
SR for the use of the Open Agent Architecture soft-
ware. Finally, we gratefully acknowledge the finan-
cial support of the US Defense Advanced Research
Projects Agency DAML Program #F30602-00-2-
0579-P0O0001.

References

1. J. Hendler, “Agents and the Semantic Web,”
IEEE Intelligent Systems, vol. 16, no. 2,
Mar./Apr. 2001, pp. 30-37.

The Auvihors

Sheila A. Mcllraith isaresearch scientist in Stanford University’s Knowl-
edge Systems L aboratory and the project lead on the KSL's DAML Web Ser-
vices project. Her research interests include knowledge representation and
reasoning techniquesfor the Web, for modeling, diagnosing, and controlling
static and dynamical systems, and for model-based programming of devices
and agents. She received her PhD in computer science from the University
of Toronto. Contact her at sam@ksl .stanford.edu.

Tran Cao Son isan assistant professor in the Department of Computer Sci-
ence at New Mexico State University. His research interests include knowl-
edge representation, autonomous agents, reasoning about actionsand changes,
answer set programming and itsapplicationsin planning and diagnosis, model
based reasoning, and logic programming. Contact him at tson@cs.nmsu.edul.

Honglei Zeng isagraduate student in the Department of Computer Science
at Stanford University. Heisa so aresearch assistant in the Knowledge Sys-
tems Laboratory. His research interests include the Semantic Web, knowl-
edge representation, commonsense reasoning, and multiple agents systems.

. T.Berners-Lee, M. Fischetti, and T. M. Der-
touzos, Weaving the Web: The Original
Design and Ultimate Destiny of the World
Wde Web by its Inventor, Harper, San Fran-
cisco, 1999.

. F. van Harmelen and |. Horrocks, “FAQs on
OIL: The Ontology Inference Layer,” IEEE
Intelligent Systems, vol. 15, no. 6, Nov./Dec.
2000, pp. 69-72.

Domain Definition Language, Version 1.2,
tech. report CVC TR-98-003/DCS TR-1165,
Yale Center for Computational Vision and
Control, Yale Univ., New Haven, Conn., 1998.

. S. Mcllraith, “Modeling and Programming
Devicesand Web Agents,” to be published in
Proc. NASA Goddard Workshop Formal

Contact him at hlzeng@ksl.stanford.edu.

Approachesto Agent-Based Systems, Lecture
Notesin Computer Science, Springer-Verlag,
New York, 2001.

. S. Mcllraith and T.C. Son, “Adapting Golog

for Programming the Semantic Web,” to be
published in Proc. 5th Symp. on Logical For-
malizations of Commonsense Reasoning
(Common Sense 2001), 2001.

10. D.L. Martin, A.J. Cheyer, and D.B. Moran,
. J. Hendler and D. McGuinness, “The DARPA “The Open Agent Architecture: A Framework
Agent Markup Language,” | EEE Intdlligent Sys- for Building Distributed Software Systems,”
tems, val. 15, no. 6, Nov./Dec. 2000, pp. 72—73. Applied Artificial Intelligence, vol. 13, nos.
1-2, Jan.—Mar. 1999, pp. 91-128.
. G. De Giacomo, Y. Lesperance, and H.
Levesgue, “ConGolog, a Concurrent Pro- 11. R. Waldinger, “Deductive Composition of
gramming Language Based on the Situation Web Software Agents,” to be published in
Calculus” Artificial Intelligence, vols. 1-2, Proc. NASA Goddard Workshop Formal
no. 121, Aug. 2000, pp. 109-169. Approachesto Agent-Based Systems, Lecture
Notesin Computer Science, Springer-Verlag,
. K. Sycaraet a., “Dynamic Service Match- New York, 2001.
making among Agents in Open Information
Environments,” J. ACM SSIGMOD Record, 12. O. Etzioni and D. Weld, “A Softbot-Based
vol. 28, no. 1, Mar. 1999, pp. 47-53. Interface to the Internet,” Comm. ACM, July
1994, Vol. 37, no. 7, pp. 72-76.
. M. Ghallab et a., PDDL: The Planning
13. V. R. Benjaminset a., “IBROW3: An Intel-

ligent Brokering Service for Knowledge-
Component Reuse on the World Wide Web,”
Proc. 11th Banff Knowledge Acquisition for
Knowledge-Based System Workshop (KAW
'98), Banff, Canada, 1998; http://spuds.cpsc.
ucal gary.cal KAW/K AW98/K AW98Proc.
html (current 20 Mar. 2001).

MARCH/APRIL 2001

computer.org/intelligent

53

